On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems
暂无分享,去创建一个
Paul R. Shearing | Dan J.L. Brett | Denis Kramer | Samuel J. Cooper | Bernhard Tjaden | Bernhard Tjaden | D. Brett | P. Shearing | S. J. Cooper | D. Kramer
[1] Bernhard Tjaden,et al. The application of 3D imaging techniques, simulation and diffusion experiments to explore transport properties in porous oxygen transport membrane support materials , 2016 .
[2] Robin H. A. Ras,et al. Ferromagnetic resonance in ϵ-Co magnetic composites , 2014, Nanotechnology.
[3] Jon G. Pharoah,et al. Effective conductivity in random porous media with convex and non-convex porosity , 2014 .
[4] Martin Ebner,et al. Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes , 2014 .
[5] Nigel P. Brandon,et al. Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries , 2014 .
[6] L. Mitoseriu,et al. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model , 2013 .
[7] Martin Ebner,et al. Validity of the Bruggeman relation for porous electrodes , 2013 .
[8] Nigel P. Brandon,et al. Microstructural Analysis of an LSCF Cathode Using In Situ Tomography and Simulation Modeling and Simulation , 2013 .
[9] M. Sahimi,et al. Tortuosity in Porous Media: A Critical Review , 2013 .
[10] F. Marone,et al. X‐Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes , 2013 .
[11] A. Beale,et al. Diffusion of CH4, CO2, and Their Mixtures in AlPO4-5 Investigated by QENS Experiments and MD Simulations , 2013 .
[12] M. Ebner,et al. Tortuosity Anisotropy in Lithium-Ion Battery Electrodes Studied by Synchrotron X-ray Tomography , 2013 .
[13] Nigel P. Brandon,et al. Exploring Electrochemical Devices Using X-ray Microscopy , 2013 .
[14] Zhong‐sheng Liu,et al. Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: Beyond Bruggeman approximation , 2010 .
[15] Yong Huang,et al. Microstructure and Electrical Properties of Porous PZT Ceramics Fabricated by Different Methods , 2010 .
[16] K. Zaghib,et al. Quantifying tortuosity in porous Li-ion battery materials , 2009 .
[17] John N. Harb,et al. Modeling of Particle-Particle Interactions in Porous Cathodes for Lithium-Ion Batteries , 2007 .
[18] Zhangxin Chen,et al. Critical review of the impact of tortuosity on diffusion , 2007 .
[19] Jon G. Pharoah,et al. On effective transport coefficients in PEM fuel cell electrodes: Anisotropy of the porous transport layers , 2006 .
[20] P. Vuoristo,et al. Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings , 2004 .
[21] T. Mackay,et al. A limitation of the Bruggeman formalism for homogenization , 2004, physics/0402018.
[22] A. Virkar,et al. Fuel Composition and Diluent Effect on Gas Transport and Performance of Anode-Supported SOFCs , 2003 .
[23] Charles W. Tobias,et al. On the Conductivity of Dispersions , 1959 .
[24] J. Hoogschagen. Diffusion in Porous Catalysts and Adsorbents , 1955 .
[25] L. Rayleigh,et al. LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .
[26] Martin Ebner,et al. Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes , 2015 .
[27] Nigel P. Brandon,et al. Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode , 2011 .
[28] John William Strutt,et al. Scientific Papers: On the Influence of Obstacles arranged in Rectangular Order upon the Properties of a Medium , 2009 .
[29] Matthew M. Mench,et al. Fuel Cell Engines , 2008 .
[30] M. Ben Clennell,et al. Tortuosity: a guide through the maze , 1997, Geological Society, London, Special Publications.
[31] Norman Epstein,et al. On tortuosity and the tortuosity factor in flow and diffusion through porous media , 1989 .
[32] J. Newman,et al. Porous‐electrode theory with battery applications , 1975 .
[33] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .
[34] O. Wiener,et al. Die theorie des Mischkörpers für das Feld der stationären Strömung , 1912 .
[35] L. Lorenz. Ueber die Refractionsconstante , 1880 .
[36] H. A. Lorentz. Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte , 1880 .
[37] J. Maxwell. A Treatise on Electricity and Magnetism: Frontmatter , 1873 .