Optical properties of porous silicon

Abstract The optical properties of porous silicon are discussed in a wide spectral range from the infrared to the ultraviolet. The analysis is done by a simulation method which adjusts parameters of dielectric function models to fit experimentally obtained reflectance spectra. Charge carriers and vibrational modes of surface-covering atoms like hydrogen and oxygen determine the infrared spectra whereas interband transitions are observed in the visible and ultraviolet range. The obtained optical constants are compared to theoretical band structure computations for “quantum wires” and “quantum spheres”. A study of aging effects and the discussion of “porosity superlattices” as optical filters are pointing to the application of porous silicon layer systems in optical devices. In addition, external efficiencies of photo- and electroluminescence experiments are given on the basis of the determined optical properties of porous silicon.

[1]  George,et al.  Hydrogen desorption kinetics from monohydride and dihydride species on silicon surfaces. , 1988, Physical review. B, Condensed matter.

[2]  R. Friesner,et al.  Prediction of anomalous redshift in semiconductor clusters , 1992 .

[3]  B. Harbecke,et al.  Coherent and incoherent reflection and transmission of multilayer structures , 1986 .

[4]  J. Thornton,et al.  Transparent conductive Sn‐doped indium oxide coatings deposited by reactive sputtering with a post cathode , 1976 .

[5]  F. Hofmann,et al.  Resistivity of porous silicon : a surface effect , 1995 .

[6]  D. Bensahel,et al.  Optical properties of low dimensional silicon structures , 1993 .

[7]  Luminescence Bands and their Proposed Origins In Highly Porous Silicon , 1995 .

[8]  V. Lehmann The physics of macroporous silicon formation , 1995 .

[9]  Hans Lüth,et al.  Investigation and design of optical properties of porosity superlattices , 1995 .

[10]  M. M. Pradhan,et al.  Multiphonon infrared absorption in silicon , 1987 .

[11]  F. Shoji,et al.  Ion Beam Analysis of the Concentration and Thermal Release of Hydrogen in Silicon Nitride Films Prepared by ECR Plasma CVD Method , 1988 .

[12]  Jerome J. Cuomo,et al.  Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering , 1977 .

[13]  Volker Lehmann,et al.  Porous silicon formation: A quantum wire effect , 1991 .

[14]  W. Theiß,et al.  Effective dielectric functions of alkali halide composites and their spectral representation , 1991 .

[15]  P. Griffiths Fourier Transform Infrared Spectrometry , 2007 .

[16]  P. Grosse,et al.  Quantitative infrared spectroscopy of thin solid and liquid films under attenuated total reflection conditions , 1995 .

[17]  Toshimichi Ito,et al.  Initial Oxidation Process of Anodized Porous Silicon with Hydrogen Atoms Chemisorbed on the Inner Surface , 1988 .

[18]  R. Brendel,et al.  An infrared dielectric function model for amorphous solids , 1992 .

[19]  S. Henkel,et al.  Connecting microscopic and macroscopic properties of porous media : choosing appropriate effective medium concepts , 1995 .

[20]  Read,et al.  First-principles calculations of the electronic properties of silicon quantum wires. , 1992, Physical review letters.

[21]  K. Beckmann Investigation of the chemical properties of stain films on silicon by means of infrared spectroscopy , 1965 .

[22]  T. P. Lynch,et al.  Luminescent anodized silicon aerocrystal networks prepared by supercritical drying , 1994, Nature.

[23]  In situ infrared spectroscopic study of luminescent porous silicon , 1995 .

[24]  H. Looyenga Dielectric constants of heterogeneous mixtures , 1965 .

[25]  J. Derrien,et al.  Porous Silicon Science and Technology , 1995 .

[26]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[27]  David J. Bergman,et al.  The dielectric constant of a composite material—A problem in classical physics , 1978 .

[28]  Adachi Model dielectric constants of Si and Ge. , 1988, Physical review. B, Condensed matter.

[29]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[30]  Búda,et al.  Optical properties of porous silicon: A first-principles study. , 1992, Physical review letters.

[31]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[32]  C. Kittel Introduction to solid state physics , 1954 .

[33]  R. Wynands,et al.  Simulation of photoacoustic IR spectra of multilayer structures , 1989 .

[34]  P. Grosse,et al.  Analysis of photoacoustic IR spectra of aerogel and silica powder , 1992 .

[35]  W. Theiß,et al.  Far infrared optical properties of metal-insulator composites , 1993 .

[36]  U. Kreibig,et al.  The limitation of electron mean free path in small silver particles , 1969 .

[37]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[38]  M. M. Pradhan,et al.  Interaction of oxygen and carbon impurities with the multiphonon infrared absorption bands of Silicon at low temperatures , 1987 .

[39]  T. Unagami,et al.  Oxidation of Porous Silicon and Properties of Its Oxide Film , 1980 .

[40]  H. Lüth,et al.  A non-destructive study of the microscopic structure of porous Si , 1993 .

[41]  J. Fricke,et al.  Characterization of supercritically dried porous silicon , 1995 .

[42]  H. Reisinger,et al.  A novel capacitor technology based on porous silicon , 1996 .

[43]  M. Evenschor Optics of two-phase composites , 1990 .

[44]  Chang,et al.  Theory of optical properties of quantum wires in porous silicon. , 1992, Physical review. B, Condensed matter.

[45]  H. Lüth,et al.  Porosity superlattices: a new class of Si heterostructures , 1994 .

[46]  W. Theiβ,et al.  Depth profiling of porous silicon layers by attenuated total reflection spectroscopy , 1995 .