Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development

[1]  Y. Saeys,et al.  Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions , 2020, Science.

[2]  M. A. de Luis Balaguer,et al.  DOF2.1 Controls Cytokinin-Dependent Vascular Cell Proliferation Downstream of TMO5/LHW , 2019, Current Biology.

[3]  Bert De Rybel,et al.  Cytokinin - A Developing Story. , 2019, Trends in plant science.

[4]  Ari Pekka Mähönen,et al.  Mobile PEAR transcription factors integrate positional cues to prime cambial growth , 2019, Nature.

[5]  Zev J. Gartner,et al.  DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors , 2018, bioRxiv.

[6]  N. Geldner,et al.  A protocol for combining fluorescent proteins with histological stains for diverse cell wall components , 2018, The Plant journal : for cell and molecular biology.

[7]  D. Weijers,et al.  Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo , 2017, Proceedings of the National Academy of Sciences.

[8]  Ari Pekka Mähönen,et al.  Theoretical approaches to understanding root vascular patterning: a consensus between recent models , 2017, Journal of experimental botany.

[9]  J. Marioni,et al.  Pooling across cells to normalize single-cell RNA sequencing data with many zero counts , 2016, Genome Biology.

[10]  Zhongchi Liu,et al.  SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root1[OPEN] , 2016, Plant Physiology.

[11]  Ari Pekka Mähönen,et al.  Plant vascular development: from early specification to differentiation , 2015, Nature Reviews Molecular Cell Biology.

[12]  G. Vert,et al.  A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. , 2016, The Plant journal : for cell and molecular biology.

[13]  H. Fukuda,et al.  A Negative Feedback Loop Controlling bHLH Complexes Is Involved in Vascular Cell Division and Differentiation in the Root Apical Meristem , 2015, Current Biology.

[14]  M. Blázquez,et al.  A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. , 2015, Developmental cell.

[15]  C. Perrot-Rechenmann Faculty Opinions recommendation of Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. , 2014 .

[16]  H. Fukuda,et al.  A bHLH Complex Activates Vascular Cell Division via Cytokinin Action in Root Apical Meristem , 2014, Current Biology.

[17]  Yang Lei,et al.  CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. , 2014, Molecular plant.

[18]  D. Wagner,et al.  Integration of growth and patterning during vascular tissue formation in Arabidopsis , 2014, Science.

[19]  Akiko Yoshida,et al.  The plant vascular system: evolution, development and functions. , 2013, Journal of integrative plant biology.

[20]  H. Fukuda,et al.  An atypical bHLH transcription factor regulates early xylem development downstream of auxin. , 2013, Plant & cell physiology.

[21]  Pierre Barbier de Reuille,et al.  A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. , 2013, Developmental cell.

[22]  H. Fukuda,et al.  Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY , 2013, Development.

[23]  Paul T Tarr,et al.  A Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional Output of the Cytokinin Signaling Network in Planta1[C][W][OA] , 2013, Plant Physiology.

[24]  M. Strnad,et al.  A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction , 2012, Plant Methods.

[25]  T. Kiba,et al.  Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. , 2012, The Plant journal : for cell and molecular biology.

[26]  Ari Pekka Mähönen,et al.  Bisymmetry in the embryonic root is dependent on cotyledon number and position , 2011, Plant signaling & behavior.

[27]  Hitoshi Sakakibara,et al.  Genome-Wide Direct Target Analysis Reveals a Role for SHORT-ROOT in Root Vascular Patterning through Cytokinin Homeostasis1[W][OA] , 2011, Plant Physiology.

[28]  Ykä Helariutta,et al.  A Mutually Inhibitory Interaction between Auxin and Cytokinin Specifies Vascular Pattern in Roots , 2011, Current Biology.

[29]  T. Schmülling,et al.  Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana[C][W][OA] , 2011, Plant Cell.

[30]  Dirk Inzé,et al.  A Novel Aux/IAA28 Signaling Cascade Activates GATA23-Dependent Specification of Lateral Root Founder Cell Identity , 2010, Current Biology.

[31]  P. Benfey,et al.  Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth , 2010, Nature.

[32]  H. Fukuda,et al.  Functional Analyses of LONELY GUY Cytokinin-Activating Enzymes Reveal the Importance of the Direct Activation Pathway in Arabidopsis[W][OA] , 2009, The Plant Cell Online.

[33]  T. Kakimoto,et al.  Cytokinins are central regulators of cambial activity , 2008, Proceedings of the National Academy of Sciences.

[34]  M. Strnad,et al.  Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. , 2008, Phytochemistry.

[35]  Pierre Hilson,et al.  Recombinational Cloning with Plant Gateway Vectors1 , 2007, Plant Physiology.

[36]  Dominique C Bergmann,et al.  Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY , 2007, Development.

[37]  G. Mortier,et al.  qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data , 2007, Genome Biology.

[38]  Jin-Young Park,et al.  Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response , 2007, Molecular Genetics and Genomics.

[39]  P. Benfey,et al.  Whole-Genome Analysis of the SHORT-ROOT Developmental Pathway in Arabidopsis , 2006, PLoS biology.

[40]  Masayuki Higuchi,et al.  Cytokinin Signaling and Its Inhibitor AHP6 Regulate Cell Fate During Vascular Development , 2006, Science.

[41]  Zhiwei Xu,et al.  Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1 , 2004, Plant Molecular Biology.

[42]  J. Kieber,et al.  Expression Profiling of Cytokinin Action in Arabidopsis1[w] , 2003, Plant Physiology.

[43]  Michael Riefler,et al.  Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species , 2003, Journal of Plant Research.

[44]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[45]  J. Kieber,et al.  Expression Profiling of Cytokinin Action in Arabidopsis , 2003 .

[46]  D. Weijers,et al.  An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. , 2001, Development.

[47]  P. Benfey,et al.  Intercellular movement of the putative transcription factor SHR in root patterning , 2001, Nature.

[48]  T. Schmülling,et al.  Regulation of plant growth by cytokinin , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Ari Pekka Mähönen,et al.  A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. , 2000, Genes & development.

[50]  Philip N Benfey,et al.  The SHORT-ROOT Gene Controls Radial Patterning of the Arabidopsis Root through Radial Signaling , 2000, Cell.

[51]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[52]  R. Leah,et al.  Biochemical and Molecular Characterization of a Barley Seed β-Glucosidase (*) , 1995, The Journal of Biological Chemistry.

[53]  J. Carlson,et al.  A [beta]-Glucosidase from Lodgepole Pine Xylem Specific for the Lignin Precursor Coniferin , 1995, Plant physiology.

[54]  K. Palme,et al.  Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. , 1993, Science.