Chaotic Vibration of a Two-dimensional Non-strictly Hyperbolic Equation

Abstract The study of chaotic vibration for multidimensional PDEs due to nonlinear boundary conditions is challenging. In this paper, we mainly investigate the chaotic oscillation of a two-dimensional non-strictly hyperbolic equation due to an energy-injecting boundary condition and a distributed self-regulating boundary condition. By using the method of characteristics, we give a rigorous proof of the onset of the chaotic vibration phenomenon of the zD non-strictly hyperbolic equation. We have also found a regime of the parameters when the chaotic vibration phenomenon occurs. Numerical simulations are also provided.