Weighted order-dependent clustering and visualization of web navigation patterns

This study introduces a simple but effective visualization system that allows decision makers to easily identify groups of visitors with different sequential navigation patterns. In particular, navigation sequences of visitors are encoded as an order-dependent format so that early visited pages have more weights in the clustering process. Experimental results on a real-world dataset show that Markov state-transition diagrams with transition probabilities based on the proposed scheme can be very useful for developing Web marketing programs tailored to visitors' preferences and interests.

[1]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[2]  Myra Spiliopoulou,et al.  Improving the Effectiveness of a Web Site with Web Usage Mining , 1999, WEBKDD.

[3]  Paul S. Bradley,et al.  Clustering via Concave Minimization , 1996, NIPS.

[4]  Kate Smith-Miles,et al.  Web page clustering using a self-organizing map of user navigation patterns , 2003, Decis. Support Syst..

[5]  DeGross Errata Notes: User Heterogeneity and Its Impact on Electronic Auction Market Design: An Empirical Exploration , 2004 .

[6]  Oren Etzioni,et al.  Towards adaptive Web sites: Conceptual framework and case study , 2000, Artif. Intell..

[7]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[8]  Ben Shneiderman,et al.  Universal usability , 2000, Commun. ACM.

[9]  Murugan Anandarajan,et al.  Profiling Web Usage in the Workplace: A Behavior-Based Artificial Intelligence Approach , 2002, J. Manag. Inf. Syst..

[10]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[11]  Umeshwar Dayal,et al.  From User Access Patterns to Dynamic Hypertext Linking , 1996, Comput. Networks.

[12]  Timo Honkela,et al.  WEBSOM - Self-organizing maps of document collections , 1998, Neurocomputing.

[13]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[14]  J. Carroll,et al.  A Feature-Based Approach to Market Segmentation via Overlapping K-Centroids Clustering , 1997 .

[15]  Rudy Setiono,et al.  Visualizing Globalization: A Self-Organizing Maps Approach to Customer Profiling , 2003, ICIS.

[16]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[17]  Mark Levene,et al.  Data Mining of User Navigation Patterns , 1999, WEBKDD.

[18]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[19]  Padhraic Smyth,et al.  Model-Based Clustering and Visualization of Navigation Patterns on a Web Site , 2003, Data Mining and Knowledge Discovery.

[20]  PatternsYongjian,et al.  Clustering of Web Users Based on Access , 1999 .

[21]  Jaideep Srivastava,et al.  Automatic personalization based on Web usage mining , 2000, CACM.

[22]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[23]  Jeffrey C. Mogul,et al.  Using predictive prefetching to improve World Wide Web latency , 1996, CCRV.

[24]  Philip S. Yu,et al.  Efficient Data Mining for Path Traversal Patterns , 1998, IEEE Trans. Knowl. Data Eng..

[25]  Geert Wets,et al.  Segmentation of visiting patterns on web sites using a sequence alignment method , 2003 .

[26]  Padhraic Smyth,et al.  Clustering Sequences with Hidden Markov Models , 1996, NIPS.

[27]  Cyrus Shahabi,et al.  Knowledge discovery from users Web-page navigation , 1997, Proceedings Seventh International Workshop on Research Issues in Data Engineering. High Performance Database Management for Large-Scale Applications.

[28]  Hans-Peter Kriegel,et al.  Incremental Clustering for Mining in a Data Warehousing Environment , 1998, VLDB.