Large scale structural optimization using genetic and generative algorithms with sequential linear programming

This thesis explores novel parameterization concepts for large scale topology optimization that enables the use of evolutionary algorithms in large-scale structural design. Specifically, two novel parameterization concepts based on generative algorithms and Boolean random networks are proposed that facilitate systematic exploration of the design space while limiting the number of design variables. The presented methodology is demonstrated on classical planar and space truss optimization problems. A nested optimization methodology using genetic algorithms and sequential linear programming is also proposed to solve truss optimization problems. Further, a number of heuristics are also presented to perform the parameterization efficiently. The results obtained on solving the standard truss optimization problems are very encouraging.

[1]  L. A. Schmit,et al.  Some approximation concepts for structural synthesis , 1973 .

[2]  Eisuke Kita,et al.  Structural design using cellular automata , 2000 .

[3]  Naoko Shimotai,et al.  Cellular automaton generating topological structures , 1994, Other Conferences.

[4]  Luciano Lamberti,et al.  Move limits definition in structural optimization with sequential linear programming. Part II: Numerical examples , 2003 .

[5]  Subramaniam Rajan,et al.  Sizing, Shape, and Topology Design Optimization of Trusses Using Genetic Algorithm , 1995 .

[6]  K. Deb,et al.  Design of truss-structures for minimum weight using genetic algorithms , 2001 .

[7]  N. Stander,et al.  On the robustness and efficiency of the SAM algorithm for structural optimization , 1995 .

[8]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[9]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[10]  Norio Inou,et al.  Self-Organization of Mechanical Structure by Cellular Automata , 1997 .

[11]  Dominik Karbowski,et al.  "Fair" Comparison of Powertrain Configurations for Plug-In Hybrid Operation Using Global Optimization , 2009 .

[12]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[13]  A. Kaveh,et al.  Sizing, geometry and topology optimization of trusses via force method and genetic algorithm , 2008 .

[14]  M. W. Dobbs,et al.  Application of optimality criteria to automated structural design , 1976 .

[15]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[16]  Yi Min Xie,et al.  Development of an intelligent cavity creation (ICC) algorithm for evolutionary structural optimisation , 1998 .

[17]  Ting-Yu Chen Calculation of the move limits for the sequential linear programming method , 1993 .

[18]  Prabhat Hajela,et al.  Genetic Algorithms in Structural Topology Optimization , 1993 .

[19]  Zafer Gürdal,et al.  CELLULAR AUTOMATA FOR DESIGN OF TWO-DIMENSIONAL CONTINUUM STRUCTURES , 2000 .

[20]  David E. Goldberg,et al.  ENGINEERING OPTIMIZATION VIA GENETIC ALGORITHM, IN WILL , 1986 .

[21]  V. Venkayya Design of optimum structures , 1971 .

[22]  Doreen Schweizer,et al.  Cellular Automata And Complexity Collected Papers , 2016 .

[23]  Makoto Ohsaki,et al.  Topology optimization of trusses by growing ground structure method , 2009 .

[24]  A. Belegundu,et al.  Trust region methods for structural optimization using exact second order sensitivity , 1991 .

[25]  Paolo Ermanni,et al.  Evolutionary truss topology optimization using a graph-based parameterization concept , 2006 .

[26]  Akira Nakamura,et al.  Some Systems for Map Generation , 1986 .

[27]  L. Schmit,et al.  Approximation concepts for efficient structural synthesis , 1976 .

[28]  K. G. Sharma,et al.  Minimum weight design of trusses using improved move limit method of sequential linear programming , 1987 .

[29]  Grant P. Steven,et al.  Evolutionary structural optimization for dynamic problems , 1996 .

[30]  Zafer Gürdal,et al.  Structural Design Using Optimality Based Cellular Automata , 2002 .

[31]  S. Boissinot,et al.  Evolutionary Biology , 2000, Evolutionary Biology.

[32]  R. A. Gellatly,et al.  Optimal Structural Design. , 1971 .

[33]  W. A. Thornton,et al.  A New Optimality Criterion Method for Large Scale Structures. , 1979 .

[34]  Grant P. Steven,et al.  A generalized evolutionary method for natural frequency optimization of membrane vibration problems in finite element analysis , 1998 .

[35]  Y. Xie,et al.  3D and multiple load case bi-directional evolutionary structural optimization (BESO) , 1999 .

[36]  Richard J. Balling,et al.  Multiple Optimum Size/Shape/Topology Designs for Skeletal Structures using a Genetic Algorithm , 2006 .

[37]  Paulo Rizzi,et al.  Optimization of multi-constrained structures based on optimality criteria , 1976 .

[38]  Casey Reas,et al.  Processing: programming for the media arts , 2006, AI & SOCIETY.

[39]  Grant P. Steven,et al.  Effect of initial nondesign domain on optimal topologies of structures during natural frequency optimization , 1997 .

[40]  Liyong Tong,et al.  Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables , 2005 .

[41]  Zafer Gürdal,et al.  Cellular Automata for design of truss structures with linear and nonlinear response , 2000 .

[42]  Ali Kaveh,et al.  A hybrid evolutionary graph-based multi-objective algorithm for layout optimization of truss structures , 2013 .

[43]  Hod Lipson,et al.  Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding , 2013, GECCO '13.

[44]  Grant P. Steven,et al.  Optimal design of multiple load case structures using an evolutionary procedure , 1994 .

[45]  Grant P. Steven,et al.  A simple approach to structural frequency optimization , 1994 .

[46]  Hugo-Tiago C. Pedro,et al.  On a cellular division method for topology optimization , 2009 .

[47]  L. Lamberti,et al.  Comparison of the numerical efficiency of different Sequential Linear Programming based algorithms for structural optimisation problems , 2000 .

[48]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[49]  Panos Y. Papalambros,et al.  Optimal Partitioning and Coordination Decisions in System Design Using an Evolutionary Algorithm , 2007 .

[50]  R. Grandhi,et al.  Effective Two-Point Function Approximation for Design Optimization , 1998 .