Acousto-microfluidics for screening of ssDNA aptamer

[1]  Michael Thompson,et al.  Ultra-high frequency piezoelectric aptasensor for the label-free detection of cocaine. , 2015, Biosensors & bioelectronics.

[2]  Seung Soo Oh,et al.  Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device. , 2015, Analytical chemistry.

[3]  H. Lilja,et al.  Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis. , 2015, Analytical chemistry.

[4]  Hao Jiang,et al.  Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection. , 2015, The Analyst.

[5]  B. Mayosi,et al.  Isolation and characterization of 2'-F-RNA aptamers against whole HIV-1 subtype C envelope pseudovirus. , 2015, Biochemical and biophysical research communications.

[6]  Yueqing Gu,et al.  MUC1 Aptamer-Based Near-Infrared Fluorescence Probes for Tumor Imaging , 2015, Molecular Imaging and Biology.

[7]  Thomas Laurell,et al.  Efficient purification of CD4+ lymphocytes from peripheral blood progenitor cell products using affinity bead acoustophoresis , 2014, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[8]  Weihong Tan,et al.  Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. , 2014, Journal of the American Chemical Society.

[9]  Jae-Young Song,et al.  An ultra-sensitive detection of a whole virus using dual aptamers developed by immobilization-free screening. , 2014, Biosensors & bioelectronics.

[10]  G. Stoecklin,et al.  An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins , 2013, Nucleic acids research.

[11]  Taekjip Ha,et al.  Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. , 2013, Journal of the American Chemical Society.

[12]  D. Bunka,et al.  Selection of 2′F-modified RNA aptamers against prostate-specific antigen and their evaluation for diagnostic and therapeutic applications , 2013, Analytical and Bioanalytical Chemistry.

[13]  H. Lilja,et al.  Integrated acoustic immunoaffinity-capture (IAI) platform for detection of PSA from whole blood samples. , 2013, Lab on a chip.

[14]  Hye Yeon Nam,et al.  Aptamer-Based Alternatives to the Conventional Immobilized Metal Affinity Chromatography for Purification of His-Tagged Proteins , 2013 .

[15]  M. Bowser,et al.  Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target. , 2013, Analytical chemistry.

[16]  Yasar Gurbuz,et al.  Rapid and sensitive detection of Nampt (PBEF/visfatin) in human serum using an ssDNA aptamer-based capacitive biosensor. , 2012, Biosensors & bioelectronics.

[17]  H. Lilja,et al.  Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. , 2012, Analytical chemistry.

[18]  Su Jin Lee,et al.  Sensitive detection of adipokines for early diagnosis of type 2 diabetes using enzyme-linked antibody-aptamer sandwich (ELAAS) assays , 2012 .

[19]  Man Bock Gu,et al.  Immobilization-free screening of aptamers assisted by graphene oxide. , 2012, Chemical communications.

[20]  Thomas Laurell,et al.  Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization. , 2011, Lab on a chip.

[21]  Sehyun Shin,et al.  Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. , 2011, Lab on a chip.

[22]  Koichi Abe,et al.  Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing. , 2010, Biosensors & bioelectronics.

[23]  Michael Famulok,et al.  Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures , 2010, Nature Protocols.

[24]  Subash C. B. Gopinath,et al.  Biosensing applications of surface plasmon resonance-based Biacore technology , 2010 .

[25]  L. Farinelli,et al.  By-passing in vitro screening—next generation sequencing technologies applied to antibody display and in silico candidate selection , 2010, Nucleic acids research.

[26]  Seung Soo Oh,et al.  Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing , 2010, Proceedings of the National Academy of Sciences.

[27]  D. Shangguan,et al.  Development of DNA aptamers using Cell-SELEX , 2010, Nature Protocols.

[28]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[29]  Selection of RNA aptamers specific to active prostate-specific antigen , 2010, Biotechnology Letters.

[30]  Thomas Laurell,et al.  Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. , 2009, Analytical chemistry.

[31]  Carl Grenvall,et al.  Harmonic microchip acoustophoresis: a route to online raw milk sample precondition in protein and lipid content quality control. , 2009, Analytical chemistry.

[32]  Thomas Laurell,et al.  Decomplexing biofluids using microchip based acoustophoresis. , 2009, Lab on a chip.

[33]  A. Heeger,et al.  Micromagnetic selection of aptamers in microfluidic channels , 2009, Proceedings of the National Academy of Sciences.

[34]  Li Li,et al.  Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe , 2009, Analytical and bioanalytical chemistry.

[35]  Jonas Persson,et al.  Acoustic microfluidic chip technology to facilitate automation of phage display selection , 2008, The FEBS journal.

[36]  John Quackenbush,et al.  What would you do if you could sequence everything? , 2008, Nature Biotechnology.

[37]  E. Mardis Next-generation DNA sequencing methods. , 2008, Annual review of genomics and human genetics.

[38]  A. LeBeau,et al.  Potent and selective peptidyl boronic acid inhibitors of the serine protease prostate-specific antigen. , 2008, Chemistry & biology.

[39]  Andrew J. Vickers,et al.  Prostate-specific antigen and prostate cancer: prediction, detection and monitoring , 2008, Nature Reviews Cancer.

[40]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[41]  Thomas Laurell,et al.  Chip integrated strategies for acoustic separation and manipulation of cells and particles. , 2007, Chemical Society reviews.

[42]  C. Lorenz,et al.  Genomic systematic evolution of ligands by exponential enrichment (Genomic SELEX) for the identification of protein-binding RNAs independent of their expression levels , 2006, Nature Protocols.

[43]  Philseok Kim,et al.  Improved sensitivity and physical properties of sol-gel protein chips using large-scale material screening and selection. , 2006, Analytical chemistry.

[44]  Sergey N Krylov,et al.  Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides , 2006, Nature Protocols.

[45]  A. Heeger,et al.  An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. , 2006, Journal of the American Chemical Society.

[46]  D. Guyer,et al.  Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease , 2006, Nature Reviews Drug Discovery.

[47]  M. Bowser,et al.  Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. , 2005, Analytical chemistry.

[48]  M. Bowser,et al.  In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. , 2004, Analytical chemistry.

[49]  Thomas Laurell,et al.  Acoustic control of suspended particles in micro fluidic chips. , 2004, Lab on a chip.

[50]  L. Gold,et al.  A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  B. Shen,et al.  Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. , 2003, Journal of biotechnology.

[52]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[53]  H. Nagasaki,et al.  Epitope analysis of a prostate-specific antigen (PSA) C-terminal-specific monoclonal antibody and new aspects for the discrepancy between equimolar and skewed PSA assays. , 1999, Clinical chemistry.

[54]  A. Hüttenhofer,et al.  In vitro and in vivo characterization of novel mRNA motifs that bind special elongation factor SelB. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. KlugS,et al.  特異な延長因子SelBに結合する新規mRNAモチーフのin vitro及びin vivoにおける性質 , 1997 .

[56]  T. Fitzwater,et al.  Potent 2′-amino-, and 2′-fluoro-2′- deoxyribonucleotide RNA inhibitors of keratinocyte growth factor , 1997, Nature Biotechnology.

[57]  J. Wills,et al.  Isolation of virus-neutralizing RNAs from a large pool of random sequences. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[59]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[60]  Gerald F. Joyce,et al.  Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA , 1990, Nature.