Spring constant and damping constant tuning of nanomechanical resonators using a single-electron transistor
暂无分享,去创建一个
[1] F. E. Terman,et al. Radio Engineers Handbook , 1943 .
[2] L. Sekaric,et al. Temperature-dependent internal friction in silicon nanoelectromechanical systems , 2000 .
[3] Lidija Sekaric,et al. Parametric amplification in a torsional microresonator , 2000 .
[4] Miles P. Blencowe,et al. Sensitivity of a micromechanical displacement detector based on the radio-frequency single-electron transistor , 2000 .
[5] D. Rugar,et al. Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.
[6] R. A. Webb,et al. Mesoscopic phenomena in solids , 1991 .
[7] M. Roukes,et al. Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals , 1996 .
[8] Yasuo Takahashi,et al. Fabrication technique for Si single-electron transistor operating at room temperature , 1995 .
[9] Paul L. McEuen,et al. Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.
[10] Masayoshi Esashi,et al. Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers , 2000 .
[11] Michel Devoret,et al. Single Charge Tunneling , 1992 .
[12] L. Sekaric,et al. Measurement of mechanical resonance and losses in nanometer scale silicon wires , 1999 .
[13] T. Kenny,et al. Attonewton force detection using ultrathin silicon cantilevers , 1997 .
[14] Michael L. Roukes,et al. Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy , 1996 .
[15] Korotkov. Intrinsic noise of the single-electron transistor. , 1994, Physical review. B, Condensed matter.
[16] Michel H. Devoret,et al. Amplifying quantum signals with the single-electron transistor , 2000, Nature.
[17] L. Sekaric,et al. Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators , 1999 .
[18] Maxim Zalalutdinov,et al. Frequency-tunable micromechanical oscillator , 2000 .