Spring constant and damping constant tuning of nanomechanical resonators using a single-electron transistor

By fabricating a single-electron transistor onto a mechanical system in a high magnetic field, it is shown that one can manipulate both the mechanical spring constant and damping constant by adjusting a potential of a nearby gate electrode. The spring constant effect is shown to be usable to control the resonant frequency of silicon-based nanomechanical resonators, while an additional damping constant effect is relevant for the resonators built upon carbon nanotube or similar molecular-sized materials. This could prove to be a very convenient scheme to actively control the response of nanomechanical systems for a variety of applications including radio-frequency signal processing, ultrasensitive force detection, and fundamental physics explorations.

[1]  F. E. Terman,et al.  Radio Engineers Handbook , 1943 .

[2]  L. Sekaric,et al.  Temperature-dependent internal friction in silicon nanoelectromechanical systems , 2000 .

[3]  Lidija Sekaric,et al.  Parametric amplification in a torsional microresonator , 2000 .

[4]  Miles P. Blencowe,et al.  Sensitivity of a micromechanical displacement detector based on the radio-frequency single-electron transistor , 2000 .

[5]  D. Rugar,et al.  Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.

[6]  R. A. Webb,et al.  Mesoscopic phenomena in solids , 1991 .

[7]  M. Roukes,et al.  Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals , 1996 .

[8]  Yasuo Takahashi,et al.  Fabrication technique for Si single-electron transistor operating at room temperature , 1995 .

[9]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[10]  Masayoshi Esashi,et al.  Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers , 2000 .

[11]  Michel Devoret,et al.  Single Charge Tunneling , 1992 .

[12]  L. Sekaric,et al.  Measurement of mechanical resonance and losses in nanometer scale silicon wires , 1999 .

[13]  T. Kenny,et al.  Attonewton force detection using ultrathin silicon cantilevers , 1997 .

[14]  Michael L. Roukes,et al.  Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy , 1996 .

[15]  Korotkov Intrinsic noise of the single-electron transistor. , 1994, Physical review. B, Condensed matter.

[16]  Michel H. Devoret,et al.  Amplifying quantum signals with the single-electron transistor , 2000, Nature.

[17]  L. Sekaric,et al.  Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators , 1999 .

[18]  Maxim Zalalutdinov,et al.  Frequency-tunable micromechanical oscillator , 2000 .