Détection de structure géométrique dans les nuages de points. (Geometric structure detection in point clouds)

Cette these s'inscrit dans la problematique generale de l'inference geometrique. Etant donne un objet qu'on ne connait qu'a travers un echantillon fini, a partir de quelle qualite d'echantillonage peut-on estimer de maniere fiable certaines de ses proprietes geometriques ou topologique? L'estimation de la topologie est maintenant un domaine assez mur. La plupart des methodes existantes sont fondees sur la notion de fonction distance. Nous utilisons cette approche pour estimer certaines notions de courbure dues a Federer, definies pour une classe assez generale d'objets non lisses. Nous introduisons une version approchee de ces courbures dont nous etudions la stabilite ainsi que calcul pratique dans le cas discret. Une version anisotrope de ces mesures de courbure permet en pratique d'estimer le lieu et la direction des aretes vives d'une surface lisse par morceaux echantillonnee par un nuage de point. En chemin nous sommes amenes a etudier certaines proprietes de regularite de la fonction distance, comme le volume de l'axe median. Un defaut des methodes qui utilisent la fonction distance est leur extreme sensibilite aux points aberrants. Pour resoudre ce probleme, nous sortons du cadre purement geometrique en remplacant les compacts par des mesures de probabilite. Nous introduisons une notion de fonction distance a une mesure, robuste aux perturbations Wasserstein (et donc aux points aberrants) et qui partage certaines proprietes de regularite et de stabilite avec la fonction distance usuelle. Grâce a ces proprietes, il est possible d'etendre de nombreux theoremes d'inference geometrique a ce cadre.

[1]  Frédéric Chazal,et al.  A Sampling Theory for Compact Sets in Euclidean Space , 2006, SCG '06.

[2]  Michael Werman,et al.  A Unified Approach to the Change of Resolution: Space and Gray-Level , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Tudor Zamfirescu,et al.  On the cut locus in Alexandrov spaces and applications to convex surfaces , 2004 .

[4]  Frédéric Chazal,et al.  Stability and Computation of Topological Invariants of Solids in ${\Bbb R}^n$ , 2007, Discret. Comput. Geom..

[5]  P. Erdös On the Hausdorff dimension of some sets in Euclidean space , 1946 .

[6]  Martin Rumpf,et al.  Robust feature detection and local classification for surfaces based on moment analysis , 2004, IEEE Transactions on Visualization and Computer Graphics.

[7]  A. Gorin ON THE VOLUME OF TUBES , 1983 .

[8]  Xiaoping Qian,et al.  Eurographics Symposium on Point-based Graphics (2007) Direct Computing of Surface Curvatures for Point-set Surfaces , 2022 .

[9]  Terry Caelli,et al.  Computation of Surface Geometry and Segmentation Using Covariance Techniques , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[11]  Gady Agam,et al.  A sampling framework for accurate curvature estimation in discrete surfaces , 2005, IEEE Transactions on Visualization and Computer Graphics.

[12]  Frédéric Chazal,et al.  Boundary Measures for Geometric Inference , 2007, Found. Comput. Math..

[13]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[14]  Daniel Cohen-Or,et al.  4-points congruent sets for robust pairwise surface registration , 2008, ACM Trans. Graph..

[15]  Leonidas J. Guibas,et al.  Analysis of scalar fields over point cloud data , 2009, SODA.

[16]  Pierre Alliez,et al.  Eurographics Symposium on Geometry Processing (2007) Voronoi-based Variational Reconstruction of Unoriented Point Sets , 2022 .

[17]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[18]  Jin-ichi Itoh,et al.  The Lipschitz continuity of the distance function to the cut locus , 2000 .

[19]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[20]  W. Weil,et al.  A local Steiner–type formula for general closed sets and applications , 2004 .

[21]  Chi-Keung Tang,et al.  Robust estimation of adaptive tensors of curvature by tensor voting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  C. Villani,et al.  Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.

[23]  K. Grove Critical point theory for distance functions , 1993 .

[24]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[25]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[26]  Tamal K. Dey,et al.  Shape Segmentation and Matching with Flow Discretization , 2003, WADS.

[27]  M. L. Connolly Measurement of protein surface shape by solid angles , 1986 .

[28]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[29]  P. Cardaliaguet,et al.  Hölder regularity of the normal distance with an application to a PDE model for growing sandpiles. , 2007 .

[30]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[31]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[32]  Frédéric Chazal,et al.  Normal cone approximation and offset shape isotopy , 2009, Comput. Geom..

[33]  Heinrich W. E. Jung Über den kleinsten Kreis, der eine ebene Figur einschließt. , 1910 .

[34]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[35]  Chia-Hsiang Menq,et al.  Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbitrary topology , 2002, Comput. Aided Des..

[36]  F. Morgan Geometric Measure Theory: A Beginner's Guide , 1988 .

[37]  I. Oleksiv,et al.  Finiteness of Hausdorff measure of level sets of bounded subsets of Euclidean space , 1985 .

[38]  Markus H. Gross,et al.  Feature Preserving Point Set Surfaces based on Non‐Linear Kernel Regression , 2009, Comput. Graph. Forum.

[39]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[40]  G. Alberti On the structure of singular sets of convex functions , 1994 .

[41]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[42]  Leonidas J. Guibas,et al.  Robust Voronoi-based curvature and feature estimation , 2009, Symposium on Solid and Physical Modeling.

[43]  J. Fu,et al.  Tubular neighborhoods in Euclidean spaces , 1985 .

[44]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[45]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[46]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[47]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[48]  N. Kleinjohann Convexity and the unique footpoint property in Riemannian geometry , 1980 .

[49]  Leonidas J. Guibas,et al.  Discovering structural regularity in 3D geometry , 2008, ACM Trans. Graph..

[50]  Stephen Smale,et al.  A Topological View of Unsupervised Learning from Noisy Data , 2011, SIAM J. Comput..

[51]  Jean-Daniel Boissonnat,et al.  Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[52]  Herbert Edelsbrunner,et al.  Weighted alpha shapes , 1992 .

[53]  A. Petrunin Semiconcave Functions in Alexandrov???s Geometry , 2013, 1304.0292.

[54]  Hiroshi Imai,et al.  Computing the volume of the union of spheres , 1988, The Visual Computer.

[55]  Frédéric Chazal,et al.  Stability of Curvature Measures , 2008, Comput. Graph. Forum.

[56]  C. Villani Topics in Optimal Transportation , 2003 .

[57]  F. Chazal,et al.  The λ-medial axis , 2005 .

[58]  Marc Pouget,et al.  Estimating differential quantities using polynomial fitting of osculating jets , 2003, Comput. Aided Geom. Des..

[59]  Dominique Hulin,et al.  Mean Curvature and Asymptotic Volume of Small Balls , 2003, Am. Math. Mon..

[60]  H. Edelsbrunner The union of balls and its dual shape , 1995 .

[61]  H. Schneider TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY , 2005 .

[62]  Frédéric Chazal,et al.  Molecular shape analysis based upon the morse-smale complex and the connolly function , 2002, SCG '03.

[63]  Frédéric Chazal,et al.  Boundary Measures for Geometric Inference , 2010, Found. Comput. Math..

[64]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Louis Nirenberg,et al.  The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton‐Jacobi equations , 2003, math/0306122.

[66]  Ludovic Rifford,et al.  Regularity properties of the distance functions to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry , 2008, 0812.4107.

[67]  Konrad Polthier,et al.  Anisotropic smoothing of point sets, , 2005, Comput. Aided Geom. Des..

[68]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[69]  Nina Amenta,et al.  Defining point-set surfaces , 2004, ACM Trans. Graph..

[70]  Herbert Edelsbrunner,et al.  The union of balls and its dual shape , 1993, SCG '93.

[71]  Douglas Maraun Phase Reconstruction from Noisy Data , 2004 .

[72]  Giovanni Alberti,et al.  On the singularities of convex functions , 1992 .

[73]  I. Holopainen Riemannian Geometry , 1927, Nature.

[74]  Wolfgang Straßer,et al.  Patch-Graph Reconstruction for Piecewise Smooth Surfaces , 2008, VMV.

[75]  G. Last,et al.  Does polynomial parallel volume imply convexity? , 2004 .

[76]  Cláudio T. Silva,et al.  Spline-based feature curves from point-sampled geometry , 2008, The Visual Computer.

[77]  V. Bangert Sets with positive reach , 1982 .

[78]  D. Cohen-Or,et al.  Robust moving least-squares fitting with sharp features , 2005, ACM Trans. Graph..

[79]  Johannes Wallner,et al.  Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..

[80]  Daniel Cohen-Or,et al.  Eurographics Symposium on Geometry Processing (2007) Data-dependent Mls for Faithful Surface Approximation , 2022 .

[81]  André Lieutier,et al.  Any open bounded subset of Rn has the same homotopy type as its medial axis , 2004, Comput. Aided Des..

[82]  H. Fédérer Geometric Measure Theory , 1969 .

[83]  Ehud Rivlin,et al.  A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data , 2007, Comput. Vis. Image Underst..

[84]  Frédéric Chazal,et al.  A Sampling Theory for Compact Sets in Euclidean Space , 2009, Discret. Comput. Geom..

[85]  Thomas Ertl,et al.  Curvature-driven modeling and rendering of point-based surfaces , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.