Snap-through of an elastica under bilateral displacement control at a material point

[1]  Lin Cheng,et al.  Topology optimization for energy dissipation design of lattice structures through snap-through behavior , 2020 .

[2]  X. Liang,et al.  Buckling-controlled two-way shape memory effect in a ring-shaped bilayer , 2019, Acta Mechanica Sinica.

[3]  D. Cao,et al.  Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments , 2019, Acta Mechanica Sinica.

[4]  Lihua Tang,et al.  Experimental investigation of a passive self-tuning resonator based on a beam-slider structure , 2019, Acta Mechanica Sinica.

[5]  Guanghui Xia,et al.  Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations , 2018 .

[6]  K. Bertoldi,et al.  Exploiting Microstructural Instabilities in Solids and Structures: From Metamaterials to Structural Transitions , 2017 .

[7]  Derek E. Moulton,et al.  Critical slowing down in purely elastic ‘snap-through’ instabilities , 2016, Nature Physics.

[8]  L. Valdevit,et al.  Multistable Shape‐Reconfigurable Architected Materials , 2016, Advanced materials.

[9]  Gennaro Scarselli,et al.  A novel bistable energy harvesting concept , 2016 .

[10]  J. R. Raney,et al.  Multistable Architected Materials for Trapping Elastic Strain Energy , 2015, Advanced materials.

[11]  Raymond H. Plaut,et al.  Snap-through of arches and buckled beams under unilateral displacement control , 2015 .

[12]  Rigoberto Burgueño,et al.  Buckling-induced smart applications: recent advances and trends , 2015 .

[13]  Lawrence N. Virgin,et al.  Coexisting equilibria and stability of a shallow arch: Unilateral displacement-control experiments and theory , 2015 .

[14]  Christopher R. Bowen,et al.  Piezoelectric and ferroelectric materials and structures for energy harvesting applications , 2014 .

[15]  Yoël Forterre,et al.  Slow, fast and furious: understanding the physics of plant movements. , 2013, Journal of experimental botany.

[16]  Jen-San Chen,et al.  Snapping of an elastica under various loading mechanisms , 2011 .

[17]  Jen-San Chen,et al.  Deformation and stability of an elastica under a point force and constrained by a flat surface , 2011 .

[18]  Jen-San Chen,et al.  Deformations and Stability of an Elastica Subjected to an Off-Axis Point Constraint , 2010 .

[19]  Raymond H. Plaut,et al.  Vibration and Snap-Through of Bent Elastica Strips Subjected to End Rotations , 2009 .

[20]  S. Chucheepsakul,et al.  Postbuckling of elastic beam subjected to a concentrated moment within the span length of beam , 2007 .

[21]  Alfred J. Crosby,et al.  Snapping Surfaces , 2007 .

[22]  Jialing Yang,et al.  Inverse problem of elastica of a variable-arc-length beam subjected to a concentrated load , 2005 .

[23]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[24]  Philip Holmes,et al.  Constrained euler buckling , 1997 .

[25]  W. Hartono Discussion: Elastica of Simple Variable-Arc-Length Beam Subjected to End Moment , 1997 .

[26]  Xiaoqiao He,et al.  Large deflections of an end supported beam subjected to a point load , 1997 .

[27]  P. Seide Large Deflections of a Simply Supported Beam Subjected to Moment at One End , 1984 .