Colloidal transport on magnetic garnet films.

This article reports several recent discoveries related to the controlled transport of paramagnetic colloidal particles above magnetic garnet films. The garnet films are thin uniaxial ferromagnetic films in which ferromagnetic domains can be organized into symmetric patterns consisting of stripes or bubbles and generate strong local magnetic field gradients. Application of an external homogeneous magnetic field on a larger scale compared to the spatial periodicity of the magnetic pattern in the film modulates the potential generated at its surface and induces the controlled motion of colloidal particles placed above the film. Several novel dynamical regimes are observed and reported, from localized trajectories to direct particle transport, depending on the geometry of the underlying magnetic pattern and on the parameters, which control the external driving field, such as frequency, strength and direction. Moreover, we show that this strategy allows separation and sorting of bi-disperse particle systems based on the particle size as well as the transport of chemical or biological cargoes attached to the colloidal carriers. Controlled transport of micro-sized cargoes (chemical or biological) by colloidal particle carriers in a microfluidic environment can bring significant contributions in several fields from targeted drug delivery to the realization of precise fluid-based micro-scale devices.

[1]  David W. M. Marr,et al.  Design of a scanning laser optical trap for multiparticle manipulation , 2000 .

[2]  J. Crocker,et al.  Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. Grier A revolution in optical manipulation , 2003, Nature.

[4]  J. Dobnikar,et al.  Observation of condensed phases of quasiplanar core-softened colloids. , 2007, Physical review letters.

[5]  Daniel A. Hammer,et al.  DNA-driven assembly of bidisperse, micron-sized colloids , 2003 .

[6]  M. Takayasu,et al.  Magnetic separation of submicron particles , 1983 .

[7]  D. Grier,et al.  Optical tweezer arrays and optical substrates created with diffractive optics , 1998 .

[8]  F. Osterloh Solution self-assembly of magnetic light modulators from exfoliated perovskite and magnetite nanoparticles. , 2002, Journal of the American Chemical Society.

[9]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[10]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[11]  Pieranski,et al.  Nonlinear phenomena in systems of magnetic holes. , 1990, Physical review letters.

[12]  Michael J. Donahue,et al.  Manipulation and sorting of magnetic particles by a magnetic force microscope on a microfluidic magnetic trap platform , 2005 .

[13]  S. Melle,et al.  Microstructure evolution in magnetorheological suspensions governed by Mason number. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  L E Helseth,et al.  Assembling and manipulating two-dimensional colloidal crystals with movable nanomagnets. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[15]  Nicole Pamme,et al.  Magnetism and microfluidics. , 2006, Lab on a chip.

[16]  Chen Yu,et al.  Microcoils for transport of magnetic beads , 2006 .

[17]  F. Sagués,et al.  Colloidal assembly on magnetically vibrated stripes. , 2008, Physical review letters.

[18]  W. Zimmermann,et al.  Shape discrimination with hexapole-dipole interactions in magic angle spinning colloidal magnetic resonance. , 2009, Journal of the American Chemical Society.

[19]  T. Fischer,et al.  Monolayer to bilayer transition in a dipolar system. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  T. Palberg,et al.  Colloidal crystal motion in electric fields , 2003 .

[21]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[22]  Alejandro Soba,et al.  Dynamics of a paramagnetic colloidal particle driven on a magnetic-bubble lattice. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  L E Helseth,et al.  Domain wall tip for manipulation of magnetic particles. , 2003, Physical review letters.

[24]  Ondrej Hovorka,et al.  Arranging matter by magnetic nanoparticle assemblers , 2005 .

[25]  P. E. Goa,et al.  Manipulation of vortices by magnetic domain walls , 2003 .

[26]  A. Blaaderen,et al.  A colloidal model system with an interaction tunable from hard sphere to soft and dipolar , 2003, Nature.

[27]  Linhong Deng,et al.  Universal physical responses to stretch in the living cell , 2007, Nature.

[28]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[29]  Andrew H. Eschenfelder,et al.  Magnetic Bubble Technology , 1980 .

[30]  Zhengdong Cheng,et al.  Controlled growth of hard-sphere colloidal crystals , 1999, Nature.

[31]  Klaus Zahn,et al.  Hydrodynamic Interactions May Enhance the Self-Diffusion of Colloidal Particles , 1997 .

[32]  Steven M. Block,et al.  Making light work with optical tweezers , 1992, Nature.

[33]  Ignacio Pagonabarraga,et al.  Magnetically actuated colloidal microswimmers. , 2008, The journal of physical chemistry. B.

[34]  Clemens Bechinger,et al.  Single-file diffusion of colloids in one-dimensional channels. , 2000, Physical review letters.

[35]  L. Clime,et al.  Dynamics of Superparamagnetic and Ferromagnetic Nano-Objects in Continuous-Flow Microfluidic Devices , 2007, IEEE Transactions on Magnetics.

[36]  Q. Ramadan,et al.  Fabrication of three-dimensional magnetic microdevices with embedded microcoils for magnetic potential concentration , 2006, Journal of Microelectromechanical Systems.

[37]  Tom H Johansen,et al.  Transport of loaded and unloaded microcarriers in a colloidal magnetic shift register. , 2007, The journal of physical chemistry. B.

[38]  G. Kullerud,et al.  Application of magnetic susceptibility gradients to magnetic separation , 1984 .

[39]  Jean-Louis Viovy,et al.  Self-Assembled Magnetic Matrices for DNA Separation Chips , 2002, Science.

[40]  Lars Egil Helseth,et al.  Microscopic magnetic squeezer , 2004 .

[41]  Michael G. Roper,et al.  Transport and separation of biomolecular cargo on paramagnetic colloidal particles in a magnetic ratchet. , 2008, The journal of physical chemistry. B.

[42]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[43]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[44]  T. Fischer,et al.  Colloidal optomagnetic dimmer. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[45]  D. Weitz,et al.  Topological changes in bipolar nematic droplets under flow. , 2007, Physical review letters.

[46]  T. M. Vickrey,et al.  Magnetic Field-Flow Fractionation: Theoretical Basis , 1980 .

[47]  A. Buguin,et al.  Rectified motion of colloids in asymmetrically structured channels. , 2002, Physical review letters.

[48]  Interaction between superconducting vortices and a Bloch wall in ferrite garnet films. , 2006, Physical review letters.

[49]  Lars Egil Helseth,et al.  Paramagnetic particles as sensitive force detectors in liquids , 2007 .

[50]  Peter Svedlindh,et al.  Programmable Motion and Separation of Single Magnetic Particles on Patterned Magnetic Surfaces , 2005 .

[51]  Victor Samper,et al.  On-chip micro-electromagnets for magnetic-based bio-molecules separation , 2004 .

[52]  Clark,et al.  Laser-induced freezing. , 1985, Physical review letters.

[53]  F. Friedlaender,et al.  Single wire model of high gradient magnetic separation processes III , 1976 .

[54]  Dynamic colloidal sorting on a magnetic bubble lattice , 2008 .

[55]  D. A. Saville,et al.  Electrophoretic assembly of colloidal crystals with optically tunable micropatterns , 2000, Nature.

[56]  Real-time magneto-optical imaging of vortices in superconducting NbSe2 , 2001, cond-mat/0104280.

[57]  S. Asher,et al.  Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals. , 2002, Journal of the American Chemical Society.

[58]  Tom H Johansen,et al.  Curvature driven transport of mouse macrophages in a pulsating magnetic garnet film ratchet. , 2007, The journal of physical chemistry. B.

[59]  M. Takayasu,et al.  Generalization of HGMS theory: The capture of ultra-fine particles , 1983 .

[60]  Roberto Piazza,et al.  'Thermal forces': colloids in temperature gradients , 2004 .

[61]  Ralf Lenke,et al.  Two-stage melting of paramagnetic colloidal crystals in two dimensions , 1999 .

[62]  Magnetically driven colloidal microstirrer. , 2007, The journal of physical chemistry. B.

[63]  P. Tierno,et al.  Control of particle assisted wetting by an external magnetic field. , 2005, The Journal of chemical physics.

[64]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.