Logarithmic Sobolev inequalities on Lie groups
暂无分享,去创建一个
Michael Ruzhansky | Marianna Chatzakou | Aidyn Kassymov | Michael Ruzhansky | A. Kassymov | M. Chatzakou
[1] Michael Ruzhansky,et al. Hardy Inequalities on Homogeneous Groups , 2019, Progress in Mathematics.
[2] Non-uniform bound and finite time blow up for solutions to a drift–diffusion equation in higher dimensions , 2016 .
[3] W. Beckner. Inequalities in Fourier analysis , 1975 .
[4] Daniel W. Stroock,et al. The logarithmic Sobolev inequality for continuous spin systems on a lattice , 1992 .
[5] William Beckner,et al. Pitt’s inequality and the uncertainty principle , 1995 .
[6] Marco M. Peloso,et al. The Sobolev embedding constant on Lie groups , 2020, Nonlinear Analysis.
[7] Michael Ruzhansky,et al. Anisotropic Shannon inequality , 2021 .
[8] Boguslaw Zegarlinski,et al. Coercive Inequalities and U-Bounds , 2021, 2105.01759.
[9] Michael Ruzhansky,et al. $L^p$-$L^q$ multipliers on locally compact groups , 2015, 1510.06321.
[10] P. Patel-Schneider,et al. OWL 2 Web Ontology Language , 2009 .
[11] Ivan Gentil,et al. Logarithmic Sobolev inequality for diffusion semigroups , 2010, Optimal Transport.
[12] Nicholas T. Varopoulos,et al. Analysis and Geometry on Groups , 1993 .
[13] A. Levine,et al. New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.
[14] J. Dolbeault,et al. A logarithmic Hardy inequality , 2009, 0912.0590.
[15] W. Hebisch,et al. Spectral multipliers for sub-Laplacians with drift on Lie groups , 2005 .
[16] B. Helffer,et al. THE LOG-SOBOLEV INEQUALITY FOR UNBOUNDED SPIN SYSTEMS , 1999 .
[17] Elias M. Stein,et al. Hardy spaces on homogeneous groups , 1982 .
[18] W. Beckner. A generalized Poincaré inequality for Gaussian measures , 1989 .
[19] Giuseppe Toscani,et al. Sur l'inégalité logarithmique de Sobolev , 1997 .
[20] T. Aubin,et al. Problèmes isopérimétriques et espaces de Sobolev , 1976 .
[21] D. S. Mitrinovic,et al. Classical and New Inequalities in Analysis , 1992 .
[22] Manuel del Pino,et al. The optimal Euclidean Lp-Sobolev logarithmic inequality , 2003 .
[23] J. Nash. Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .
[24] W. Beckner. Pitt's inequality and the fractional Laplacian: Sharp error estimates , 2007, math/0701939.
[25] Michael Ruzhansky,et al. Fractional logarithmic inequalities and blow-up results with logarithmic nonlinearity on homogeneous groups , 2019, Nonlinear Differential Equations and Applications NoDEA.
[26] William Beckner,et al. Geometric asymptotics and the logarithmic Sobolev inequality , 1999 .
[27] Fred B. Weissler,et al. Logarithmic Sobolev inequalities for the heat-diffusion semigroup , 1978 .
[28] Daniel W. Stroock,et al. Moment estimates derived from Poincar'e and log-arithmic Sobolev inequalities , 1994 .
[29] M. Peloso,et al. Sobolev spaces on Lie groups: Embedding theorems and algebra properties , 2018, Journal of Functional Analysis.
[30] P. Meyer,et al. Sur les inegalites de Sobolev logarithmiques. I , 1982 .
[31] J. Merker. Generalizations of logarithmic Sobolev inequalities , 2008 .
[32] J. Qiao,et al. Several logarithmic Caffarelli–Kohn–Nirenberg inequalities and applications☆ , 2018 .
[33] Michael Ruzhansky,et al. Quantization on Nilpotent Lie Groups , 2016 .
[34] J. Rosen. Sobolev Inequalities for Weight Spaces and Supercontractivity , 1976 .
[35] D. Bakry,et al. Weighted Nash Inequalities , 2010, 1004.3456.
[36] F. Clarke,et al. GROSS'S LOGARITHMIC SOBOLEV INEQUALITY: A SIMPLE PROOF , 1979 .
[37] Alice Guionnet,et al. Lectures on Logarithmic Sobolev Inequalities , 2003 .
[38] B. Zegarliński,et al. Coercive Inequalities on Metric Measure Spaces , 2009, 0905.1713.
[39] William Beckner. Geometric proof of Nash's inequality , 1998 .
[40] Ujjal Das. On weighted logarithmic-Sobolev & logarithmic-Hardy inequalities , 2020, Journal of Mathematical Analysis and Applications.
[41] G. Talenti,et al. Best constant in Sobolev inequality , 1976 .
[42] N. Garofalo,et al. Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups , 2000 .
[43] Francesco Uguzzoni,et al. Stratified Lie groups and potential theory for their sub-Laplacians , 2007 .
[44] Michael Ruzhansky,et al. L-L multipliers on locally compact groups , 2020 .
[45] S. Bobkov,et al. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities , 2000 .
[46] Esther Bou Dagher,et al. Coercive inequalities in higher-dimensional anisotropic heisenberg group , 2021, Analysis and Mathematical Physics.
[47] Michael Ruzhansky,et al. Hypoelliptic functional inequalities , 2018, 1805.01064.
[48] Esther Bou Dagher. Note on the $q$-Logarithmic Sobolev and $p$-Talagrand Inequalities on Carnot Groups , 2021 .
[49] Michael Ruzhansky,et al. Sobolev spaces on graded lie groups , 2017 .
[50] M. Ledoux,et al. Logarithmic Sobolev Inequalities , 2014 .
[51] R. Adams. General logarithmic Sobolev inequalities and Orlicz imbeddings , 1979 .
[52] Michael Ruzhansky,et al. Best constants in Sobolev and Gagliardo–Nirenberg inequalities on graded groups and ground states for higher order nonlinear subelliptic equations , 2017, Calculus of Variations and Partial Differential Equations.
[53] E. Carlen. Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .
[54] D. Suragan,et al. Fractional Hardy–Sobolev Inequalities and Existence Results for Fractional Sub-Laplacians , 2020, Journal of Mathematical Sciences.
[55] P. Borwein. Classical and New Inequalities in Analysis, Mathematics and Its Applications (East European Series) Vol. 61, D. S. Mitrinovic J. E. Pecaric and A. M. Fink, Kluwer Academic, 1993, xvii + 740 pp. , 1994 .
[56] J. Dolbeault,et al. A variational proof of Nash’s inequality , 2018, Rendiconti Lincei - Matematica e Applicazioni.
[57] T. Ogawa,et al. Logarithmic Sobolev and Shannon's inequalities and an application to the uncertainty principle , 2018 .
[58] Boguslaw Zegarlinski,et al. Coercive Inequalities on Carnot Groups: Taming Singularities , 2021 .
[59] E. Carlen,et al. Sharp constant in Nash's inequality , 1993 .