Functional ANOVA modeling for proportional hazards regression

The logarithm of the relative risk function in a proportional hazards model involving one or more possibly time-dependent covariates is treated as a specified sum of a constant term, main effects, and selected interaction terms. Maximum partial likelihood estimation is used, where the maximization is taken over a suitably chosen finite-dimensional estimation space, whose dimension increases with the sample size and which is constructed from linear spaces of functions of one covariate and their tensor products. The L 2 rate of convergence for the estimate and its ANOVA components is obtained. An adaptive numerical implementation is discussed, whose performance is compared to (full likelihood) hazard regression both with and without the restriction to proportional hazards.

[1]  D. Harrington,et al.  Counting Processes and Survival Analysis , 1991 .

[2]  Trevor Hastie,et al.  Polynomial splines and their tensor products in extended linear modeling. Discussion and rejoinder , 1997 .

[3]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[4]  Finbarr O'Sullivan,et al.  Nonparametric Estimation in the Cox Model , 1993 .

[5]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[6]  D. Harrington,et al.  Regression Splines in the Cox Model with Application to Covariate Effects in Liver Disease , 1990 .

[7]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[8]  C. J. Stone,et al.  The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .

[9]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[10]  C. Kooperberg,et al.  Hazard regression with interval-censored data. , 1997, Biometrics.

[11]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[12]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[13]  Chong Gu PENALIZED LIKELIHOOD HAZARD ESTIMATION: A GENERAL PROCEDURE , 1996 .

[14]  M LeBlanc,et al.  Adaptive Regression Splines in the Cox Model , 1999, Biometrics.

[15]  G. Wahba,et al.  Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy : the 1994 Neyman Memorial Lecture , 1995 .

[16]  Jianhua Z. Huang,et al.  The L2 Rate of Convergence for Event History Regression with Time‐dependent Covariates , 1998 .

[17]  Jianhua Z. Huang CONCAVE EXTENDED LINEAR MODELING: A THEORETICAL SYNTHESIS , 2001 .

[18]  F. O’Sullivan Nonparametric Estimation of Relative Risk Using Splines and Cross-Validation , 1988 .

[19]  D. Cox,et al.  Analysis of Survival Data. , 1986 .

[20]  Robert Gray,et al.  Flexible Methods for Analyzing Survival Data Using Splines, with Applications to Breast Cancer Prognosis , 1992 .

[21]  R. Gill,et al.  Cox's regression model for counting processes: a large sample study : (preprint) , 1982 .

[22]  R. Gentleman,et al.  Local full likelihood estimation for the proportional hazards model. , 1991, Biometrics.

[23]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[24]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[25]  Dorota M. Dabrowska,et al.  Smoothed Cox regression , 1997 .

[26]  Young K. Truong,et al.  The L2 rate of convergence for hazard regression , 1995 .

[27]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linearmodeling , 1997 .

[28]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[29]  B. Efron The Efficiency of Cox's Likelihood Function for Censored Data , 1977 .

[30]  Jianhua Z. Huang Projection estimation in multiple regression with application to functional ANOVA models , 1998 .

[31]  N. Breslow Covariance analysis of censored survival data. , 1974, Biometrics.

[32]  D. Q. Lamb STATISTICAL MODELS BASED ON THE FERMI MODEL. , 1970 .

[33]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .