A property of quantum relative entropy with an application to privacy in quantum communication

We prove the following information-theoretic property about quantum states. <i>Substate theorem:</i> Let ρ and σ be quantum states in the same Hilbert space with relative entropy <i>S</i>(ρ ∥ σ) ≔ Tr ρ (log ρ− log σ) = <i>c</i>. Then for all ε > 0, there is a state ρ′ such that the trace distance ∥ρ′ − ρ∥<sub>tr</sub> ≔ Tr &sqrt;(ρ′ − ρ)<sup>2</sup> ≤ ε, and ρ′/2<sup><i>O</i>(<i>c</i>/ε<sup>2</sup>)</sup> ≤ σ. It states that if the relative entropy of ρ and σ is small, then there is a state ρ′ close to ρ, i.e. with small trace distance ∥ρ′ − ρ∥<sub>tr</sub>, that when scaled down by a factor 2<sup><i>O</i>(<i>c</i>)</sup> ‘sits inside’, or becomes a ‘substate’ of, σ. This result has several applications in quantum communication complexity and cryptography. Using the substate theorem, we derive a privacy trade-off for the <i>set membership problem</i> in the two-party quantum communication model. Here Alice is given a subset <i>A</i> &subse; [<i>n</i>], Bob an input <i>i</i> ∈ [<i>n</i>], and they need to determine if <i>i</i> ∈ <i>A</i>. <i>Privacy trade-off for set membership:</i> In any two-party quantum communication protocol for the set membership problem, if Bob reveals only <i>k</i> bits of information about his input, then Alice must reveal at least <i>n</i>/2<sup>O(<i>k</i>)</sup> bits of information about her input. We also discuss relationships between various information theoretic quantities that arise naturally in the context of the substate theorem.

[1]  Carlton M. Caves,et al.  Mathematical techniques for quantum communication theory , 1995 .

[2]  Rahul Jain,et al.  New Binding-Concealing Trade-Offs for Quantum String Commitment , 2005, Journal of Cryptology.

[3]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.

[4]  Reuven Bar-Yehuda,et al.  Privacy, additional information and communication , 1993, IEEE Trans. Inf. Theory.

[5]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[6]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[9]  Jaikumar Radhakrishnan,et al.  The Communication Complexity of Pointer Chasing , 2001, J. Comput. Syst. Sci..

[10]  Jaikumar Radhakrishnan,et al.  A Direct Sum Theorem in Communication Complexity via Message Compression , 2003, ICALP.

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Jaikumar Radhakrishnan,et al.  Prior entanglement, message compression and privacy in quantum communication , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[13]  Amit Chakrabarti,et al.  An optimal randomised cell probe lower bound for approximate nearest neighbour searching , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[14]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[15]  Andrew Chi-Chih Yao,et al.  Informational complexity and the direct sum problem for simultaneous message complexity , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[16]  Rahul Jain,et al.  Communication complexity of remote state preparation with entanglement , 2005, Quantum Inf. Comput..

[17]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[18]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[19]  Hartmut Klauck On Quantum and Approximate Privacy , 2002, STACS.

[20]  Noam Nisan,et al.  Rounds in Communication Complexity Revisited , 1993, SIAM J. Comput..

[21]  Jaikumar Radhakrishnan,et al.  Privacy and interaction in quantum communication complexity and a theorem about the relative entropy of quantum states , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[22]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[23]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[24]  Renato Renner Extracting classical randomness in a quantum world , 2008, 2008 IEEE Information Theory Workshop.

[25]  Peter Bro Miltersen,et al.  On data structures and asymmetric communication complexity , 1994, STOC '95.

[26]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[27]  Hartmut Klauck,et al.  Direct Product Theorems for Communication Complexity via Subdistribution Bounds , 2007, Electron. Colloquium Comput. Complex..

[28]  Hartmut Klauck,et al.  One-way communication complexity and the Neciporuk lower bound on formula size , 2001, SIAM J. Comput..

[29]  Hartmut Klauck,et al.  On quantum and probabilistic communication: Las Vegas and one-way protocols , 2000, STOC '00.

[30]  JainRahul,et al.  A property of quantum relative entropy with an application to privacy in quantum communication , 2009 .

[31]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[32]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[33]  Hartmut Klauck,et al.  Interaction in Quantum Communication , 2006, IEEE Transactions on Information Theory.

[34]  C. Helstrom Quantum detection and estimation theory , 1969 .

[35]  Ronald de Wolf,et al.  Bounded-error quantum state identification and exponential separations in communication complexity , 2005, STOC '06.

[36]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.