Web Information Personalization: Challenges and Approaches

As the number of web pages increases dramatically, the problem of the information overload becomes more severe when browsing and searching the WWW. To alleviate this problem, personalization becomes a popular remedy to customize the Web environment towards a user’s preference. To date, recommendation systems and personalized web search systems are the most successful examples of Web personalization. By focusing on these two types of systems, this paper reviews the challenges and the corresponding approaches proposed in the past ten years.

[1]  Marko Balabanovic,et al.  An adaptive Web page recommendation service , 1997, AGENTS '97.

[2]  Alexandros Moukas Amalthaea Information Discovery and Filtering Using a Multiagent Evolving Ecosystem , 1997, Appl. Artif. Intell..

[3]  Ronald Fagin,et al.  Combining Fuzzy Information from Multiple Systems , 1999, J. Comput. Syst. Sci..

[4]  Francisco Tanudjaja,et al.  Persona: a contextualized and personalized web search , 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sciences.

[5]  Clement T. Yu,et al.  Personalized web search by mapping user queries to categories , 2002, CIKM '02.

[6]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[7]  Katia P. Sycara,et al.  WebMate: a personal agent for browsing and searching , 1998, AGENTS '98.

[8]  Anthony Scime WebSifter: an ontology-based personalizable search agent for the Web , 2000, Proceedings 2000 Kyoto International Conference on Digital Libraries: Research and Practice.

[9]  C. Lee Giles,et al.  Accessibility of information on the Web , 2000, INTL.

[10]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[11]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[12]  Hal R. Varian,et al.  Reprint: How Much Information? , 2000 .

[13]  William P. Birmingham,et al.  Improving category specific Web search by learning query modifications , 2001, Proceedings 2001 Symposium on Applications and the Internet.

[14]  Ah-Hwee Tan,et al.  Learning user profiles for personalized information dissemination , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[15]  C. Shahabi,et al.  Two-Phase Decision Fusion Based On User Preference ∗ , 2003 .

[16]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[17]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[18]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[19]  William P. Birmingham,et al.  Architecture of a metasearch engine that supports user information needs , 1999, CIKM '99.

[20]  Pattie Maes,et al.  Evolving agents for personalized information filtering , 1993, Proceedings of 9th IEEE Conference on Artificial Intelligence for Applications.

[21]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[22]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[23]  Henry Lieberman,et al.  Let's browse: a collaborative browsing agent , 1999, Knowl. Based Syst..

[24]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[25]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[26]  Brendan Kitts,et al.  Cross-sell: a fast promotion-tunable customer-item recommendation method based on conditionally independent probabilities , 2000, KDD '00.

[27]  Farnoush Banaei Kashani,et al.  Feature Matrices: A Model for Efficient and Anonymous Web Usage Mining , 2001, EC-Web.

[28]  Hsinchun Chen,et al.  Personalized spiders for web search and analysis , 2001, JCDL '01.

[29]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[30]  Raymond T. Ng,et al.  Distance-based outliers: algorithms and applications , 2000, The VLDB Journal.

[31]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[32]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[33]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[34]  Yi-Shin Chen,et al.  An Adaptive Recommendation System without Explicit Acquisition of User Relevance Feedback , 2004, Distributed and Parallel Databases.

[35]  Tao Luo,et al.  Effective personalization based on association rule discovery from web usage data , 2001, WIDM '01.

[36]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[37]  Jaideep Srivastava,et al.  Automatic personalization based on Web usage mining , 2000, CACM.

[38]  Javed Mostafa,et al.  Detection of shifts in user interests for personalized information filtering , 1996, SIGIR '96.

[39]  Christos Faloutsos,et al.  FALCON: Feedback Adaptive Loop for Content-Based Retrieval , 2000, VLDB.

[40]  Dennis McLeod,et al.  Yoda: An Accurate and Scalable Web-Based Recommendation System , 2001, CoopIS.

[41]  Bradley N. Miller,et al.  Applying Collaborative Filtering to Usenet News , 1997 .

[42]  Farnoush Banaei-Kashani,et al.  A Reliable, Efficient, and Scalable System for Web Usage Data Acquisition , 2001 .

[43]  Zheng Weimin,et al.  Using online relevance feedback to build effective personalized metasearch engine , 2001, Proceedings of the Second International Conference on Web Information Systems Engineering.

[44]  Cyrus Shahabi,et al.  Knowledge discovery from users Web-page navigation , 1997, Proceedings Seventh International Workshop on Research Issues in Data Engineering. High Performance Database Management for Large-Scale Applications.

[45]  Bernard Mérialdo,et al.  Using category-based collaborative filtering in the Active WebMuseum , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).