The course of regenerating retinal axons in the frog chiasma: the influence of axons from the other eye

[1]  R. Guillery Early monocular enucleations in fetal ferrets produce a decrease of uncrossed and an increase of crossed retinofugal components: a possible model for the albino abnormality. , 1989, Journal of anatomy.

[2]  R. M. Gaze,et al.  A developmental and ultrastructural study of the optic chiasma in Xenopus. , 1988, Development.

[3]  Bernd Fritzsch,et al.  Ipsilateral retinofugal and retinopetal projections in normal and monocular cichlid fish , 1987, Neuroscience Letters.

[4]  C. Shatz,et al.  Prenatal development of cat retinogeniculate axon arbors in the absence of binocular interactions , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  J. Fawcett Factors guiding regenerating retinotectal fibres in the frog Xenopus laevis. , 1985, Journal of embryology and experimental morphology.

[6]  R. M. Gaze,et al.  The effects of the fibre environment on the paths taken by regenerating optic nerve fibres in Xenopus. , 1985, Journal of embryology and experimental morphology.

[7]  P. Grobstein,et al.  Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. I. Retinal distribution of ipsilaterally projecting cells in normal and experimentally manipulated frogs , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  S. Thanos,et al.  Elimination of ipsilateral retinotectal projections in mono-ophthalmic chick embryos , 1984, Neuroscience Letters.

[9]  J. Hiscock,et al.  Aberrant retinotectal projection induced by larval unilateral enucleation in Xenopus , 1983, Neuroscience Letters.

[10]  J W Fawcett,et al.  Pathways of Xenopus optic fibres regenerating from normal and compound eyes under various conditions. , 1983, Journal of embryology and experimental morphology.

[11]  R. M. Gaze,et al.  The innervation of a virgin tectum by a double-temporal or a double-nasal eye in Xenopus. , 1982, Journal of embryology and experimental morphology.

[12]  F. Scalia,et al.  Long‐term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina , 1981, The Journal of comparative neurology.

[13]  C Kennard,et al.  Factors involved in the development of ipsilateral retinothalamic projections in Xenopus laevis. , 1981, Journal of embryology and experimental morphology.

[14]  D. Stelzner,et al.  The aberrant retino‐retinal projection during optic nerve regeneration in the frog. III. Effects of crushing both nerves , 1981, The Journal of comparative neurology.

[15]  G. Lázár Long-term persistence, after eye-removal, of unmyelinated fibres in the frog visual pathway , 1980, Brain Research.

[16]  R. Hunt,et al.  Retinotectal plasticity in Xenopus: anomalous ipsilateral projection following late larval eye removal. , 1980, Developmental biology.

[17]  D. Stelzner,et al.  Aberrant retino-retinal pathway during early stages of regeneration in adult Rana pipiens , 1979, Brain Research.

[18]  R. M. Gaze,et al.  The diencephalic course of regenerating retinotectal fibres in Xenopus tadpoles. , 1978, Journal of embryology and experimental morphology.

[19]  R. M. Gaze,et al.  The induction of an anomalous ipsilateral retinotectal projection in Xenopus laevis , 2004, Anatomy and Embryology.

[20]  C. Métin,et al.  Fate of uncrossed retinal projections following early or late prenatal monocular enucleation in the mouse , 1987, The Journal of comparative neurology.