A micromechanical model for inelastic ductile damage prediction in polycrystalline metals for metal forming

Abstract This paper deals with micromechanical modeling of ductile damage and its effects (coupling) on the plastic behavior of FCC polycrystalline metallic materials. The ‘fully coupled’ constitutive equations are written in the framework of rate-dependent polycrystalline plasticity where a ‘ductile’ damage variable has been introduced at a crystallographic slip system (CSS) scale in order to describe the material degradation by initiation, growth and coalescence of microdefects inside the aggregate. Both, theoretical and numerical (FEA) aspects of the proposed micromechanical coupled model are presented. The ability of the obtained model to predict the plastic strain localization, due to the ductile damage effect, in the classical tensile test is carefully analyzed. Application is also made to the fracture prediction in deep drawing of a cylindrical cup using a thin sheet. Finally, some concluding remarks and perspectives are pointed out.

[1]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[3]  R.H.J. Peerlings,et al.  Computational damage mechanics , 1999 .

[4]  S. Forest,et al.  Modelling Finite Deformation of Polycrystals Using Local Objective Frames , 1999 .

[5]  Khemais Saanouni,et al.  Predictions of the complex cyclic behavior of polycrystals using a self-consistent modeling , 2000 .

[6]  D. Jeulin,et al.  Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model , 2001 .

[7]  G. Cailletaud A micromechanical approach to inelastic behaviour of metals , 1992 .

[8]  G. Cailletaud,et al.  Utilisation de modèles polycristallins pour le calcul par éléments finis , 1994 .

[9]  John W. Hutchinson,et al.  Elastic-plastic behaviour of polycrystalline metals and composites , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  Jacques Besson,et al.  Large scale object-oriented finite element code design , 1997 .

[11]  M. Dao,et al.  Non-Schmid effects and localized plastic flow in intermetallic alloys , 1993 .

[12]  Raju Sethuraman,et al.  A continuum damage mechanics model for ductile fracture , 2000 .

[13]  Laurent Duchene,et al.  Anisotropic elasto-plastic finite element analysis using a stress-strain interpolation method based on a polycrystalline model , 2004 .

[14]  Dierk Raabe,et al.  Using texture components in crystal plasticity finite element simulations , 2004 .

[15]  Frédéric Feyel,et al.  Some elements of microstructural mechanics , 2003 .

[16]  C. Miehe,et al.  Anisotropic finite elastoplastic analysis of shells: simulation of earing in deep-drawing of single- and polycrystalline sheets by Taylor-type micro-to-macro transitions , 2004 .

[17]  Jean-Louis Chaboche,et al.  Continuous damage mechanics — A tool to describe phenomena before crack initiation☆ , 1981 .

[18]  Khemais Saanouni,et al.  Micromechanical modeling of low cycle fatigue under complex loadings-Part I. Theoretical formulation , 1996 .

[19]  T. Lin Analysis of elastic and plastic strains of a face-centred cubic crystal☆ , 1957 .

[20]  K. Saanouni,et al.  Effect of Some Parameters on the Plastic Fatigue Behavior with Micromechanical Approach , 1997 .

[21]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[22]  Bhushan Lal Karihaloo,et al.  Comprehensive structural integrity , 2003 .

[23]  Jean-Baptiste Leblond,et al.  Recent extensions of Gurson's model for porous ductile metals , 1997 .

[24]  Frédéric Feyel,et al.  Introduction au calcul de microstructures , 2002 .

[25]  M. Brünig,et al.  Finite elastic–plastic deformation behaviour of crystalline solids based on a non-associated macroscopic flow rule 1Paper presented at the Sixth International Symposium on Plasticity and Its Current Applications, Juneau, Alaska (U.S.A.), July 14–18, 1997. 1 , 1998 .

[26]  T. Kuwabara,et al.  Shear–band development in polycrystalline metal with strength–differential effect and plastic volume expansion , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  E. Schmid,et al.  Kristallplastizität mit besonderer Berücksichtigung der Metalle , 1935 .

[28]  V. Tvergaard On localization in ductile materials containing spherical voids , 1982, International Journal of Fracture.

[29]  Georges Cailletaud,et al.  Integration methods for complex plastic constitutive equations , 1996 .

[30]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[31]  K. Saanouni,et al.  Damaged Anelastic Behavior of FCC Polycrystalline Metals with Micromechanical Approach , 1994 .

[32]  G. Rousselier,et al.  Ductile fracture models and their potential in local approach of fracture , 1987 .

[33]  Surya R. Kalidindi,et al.  On the prediction of yield surfaces by the crystal plasticity models for fcc polycrystals , 2000 .

[34]  J. Chaboche Continuum Damage Mechanics: Part I—General Concepts , 1988 .

[35]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[36]  Georges Cailletaud,et al.  Distribution of normal stress at grain boundaries in multicrystals: application to an intergranular damage modeling , 2002 .

[37]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[38]  A. L. Gurson,et al.  Porous Rigid Plastic Materials Containing Rigid Inclusions; Yield Function, Plastic Potential and Void Nucleation , 1976 .

[39]  P. Franciosi,et al.  The concepts of latent hardening and strain hardening in metallic single crystals , 1985 .

[40]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[41]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[42]  S. Forest Introduction au calcul de microstructuresElements of microstructural mechanics , 2002 .

[43]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[44]  Stéphane Bugat,et al.  Comportement et endommagement des aciers austéno-ferritiques vieillis : une approche micromécanique , 2000 .

[45]  Lallit Anand,et al.  Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals at large strains , 2004 .

[46]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[47]  K. Saanouni,et al.  A CDM Approach of Ductile Damage with Plastic Compressibility , 2006 .

[48]  K. Saanouni,et al.  Modeling of complex cyclic inelasticity in heterogeneous polycrystalline microstructure , 1998 .