Isogeometric analysis and domain decomposition methods

In the present work we use the mortar finite element method for the coupling of nonconforming discretized sub-domains in the framework of nonlinear elasticity. The mortar method has been shown to preserve optimal convergence rates (see Laursen (2002) [25] for details) and is variationally consistent. We show that the method can be applied to isogeometric analysis with little effort, once the framework of NURBS based shape functions has been implemented. Furthermore, a specific coordinate augmentation technique allows the design of an energy–momentum scheme for the constrained mechanical system under consideration. The excellent performance of the redesigned mortar method as well as the energy–momentum scheme is illustrated in representative numerical examples.

[1]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[2]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[3]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[4]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[5]  Tod A. Laursen,et al.  A segment-to-segment mortar contact method for quadratic elements and large deformations , 2008 .

[6]  Peter Wriggers,et al.  A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .

[7]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[8]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[9]  Peter Wriggers,et al.  Mortar based frictional contact formulation for higher order interpolations using the moving friction cone , 2006 .

[10]  Tod A. Laursen,et al.  Energy consistent algorithms for frictional contact problems , 1998 .

[11]  Long Chen FINITE ELEMENT METHOD , 2013 .

[12]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[13]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[14]  O. Widlund,et al.  Domain Decomposition Methods in Science and Engineering XVI , 2007 .

[15]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[16]  Olof B. Widlund,et al.  Domain Decomposition Methods in Science and Engineering XVI (Lecture Notes in Computational Science and Engineering) , 2007 .

[17]  Peter Betsch,et al.  Transient 3d contact problems—NTS method: mixed methods and conserving integration , 2011 .

[18]  P. Tallec,et al.  A discontinuous stabilized mortar method for general 3D elastic problems , 2007 .

[19]  Peter Betsch,et al.  Transient three‐dimensional domain decomposition problems: Frame‐indifferent mortar constraints and conserving integration , 2010 .

[20]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[21]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[22]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[23]  Barbara Wohlmuth,et al.  A new dual mortar method for curved interfaces: 2D elasticity , 2005 .

[24]  Michael A. Puso,et al.  A 3D mortar method for solid mechanics , 2004 .

[25]  Peter Betsch,et al.  Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration , 2011 .

[26]  T. Laursen,et al.  Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.

[27]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[28]  Peter Betsch,et al.  Conservation properties of a time FE method—part II: Time‐stepping schemes for non‐linear elastodynamics , 2001 .

[29]  Peter Betsch,et al.  A mortar method for energy‐momentum conserving schemes in frictionless dynamic contact problems , 2009 .

[30]  Barbara I. Wohlmuth,et al.  A Multigrid Method Based on the Unconstrained Product Space for Mortar Finite Element Discretizations , 2001, SIAM J. Numer. Anal..

[31]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[32]  P. Betsch,et al.  A comparison of structure-preserving integrators for discrete thermoelastic systems , 2011 .

[33]  P. Tallec,et al.  Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .

[34]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[35]  J. Périaux,et al.  Domain Decomposition Methods in Science and Engineering , 1994 .

[36]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[37]  J. Z. Zhu,et al.  The finite element method , 1977 .

[38]  Peter Betsch,et al.  Energy-momentum consistent algorithms for dynamic thermomechanical problems—Application to mortar domain decomposition problems , 2011 .