Block Diagonal Matrices

Block Diagonal Matrices In this paper I present basic properties of block diagonal matrices over a set. In my approach the finite sequence of matrices in a block diagonal matrix is not restricted to square matrices. Moreover, the off-diagonal blocks need not be zero matrices, but also with another arbitrary fixed value.

[1]  Andrzej Trybulec,et al.  On the Sets Inhabited by Numbers 1 , 2003 .

[2]  Katarzyna Zawadzka,et al.  Sum and Product of Finite Sequences of Elements of a Field , 1992 .

[3]  Czeslaw Bylinski Binary Operations Applied to Finite Sequences , 1990 .

[4]  Karol Pąk,et al.  Basic Properties of the Rank of Matrices over a Field , 2007 .

[5]  G. Bancerek The Fundamental Properties of Natural Numbers , 1990 .

[6]  Wojciech A. Trybulec Vectors in Real Linear Space , 1990 .

[7]  Wojciech A. Trybulec Lattice of Subgroups of a Group. Frattini Subgroup , 1991 .

[8]  Czeslaw Bylinski Functions and Their Basic Properties , 2004 .

[9]  Katarzyna Jankowska,et al.  Transpose Matrices and Groups of Permutations , 1991 .

[10]  W. Neville Holmes,et al.  Binary Arithmetic , 2007, Computer.

[11]  Eugeniusz Kusak Abelian Groups, Fields and Vector Spaces 1 , 1990 .

[12]  Kenneth Halpern August The Cardinal Numbers , 1888, Nature.

[13]  Katarzyna Zawadzka The Product and the Determinant of Matrices with Entries in a Field , 2004 .

[14]  Wojciech A. Trybulec Lattice of Subgroups of a Group , 2007 .

[15]  Jaroslaw Kotowicz,et al.  Functions and finite sequences of real numbers , 1993 .

[16]  Czesław Bylí Finite Sequences and Tuples of Elements of a Non-empty Sets , 1990 .

[17]  A. Kondracki,et al.  The Chinese Remainder Theorem , 2019, Certain Number-Theoretic Episodes in Algebra.

[18]  Katarzyna Jankowska,et al.  Matrices. Abelian Group of Matrices , 1991 .