A Unified Numerical Approach for a Large Class of Nonlinear Black-Scholes Models

In this paper, we consider a class of non-linear models in mathematical finance, where the volatility depends on the second spatial derivative of the option value. We study the convergence and realization of the constructed, on a fitted non-uniform meshes, implicit difference schemes. We implement various Picard and Newton iterative processes. Numerical experiments are discussed.

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  Tinne Haentjens,et al.  Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation , 2012 .

[3]  Daniel Sevcovic,et al.  Nonlinear Parabolic Equations arising in Mathematical Finance , 2017, 1707.01436.

[4]  Matthias Ehrhardt Nonlinear models in mathematical finance : new research trends in option pricing , 2008 .

[5]  Miglena N. Koleva,et al.  On splitting-based numerical methods for nonlinear models of European options , 2016, Int. J. Comput. Math..

[6]  Hualiang Yu,et al.  Electrocardiographic changes caused by lithium intoxication in an elderly patient , 2016, SpringerPlus.

[7]  Peter A. Forsyth,et al.  Numerical convergence properties of option pricing PDEs with uncertain volatility , 2003 .

[8]  Farhad Khaksar Haghani,et al.  On Generalized Traub’s Method for Absolute Value Equations , 2015, J. Optim. Theory Appl..

[9]  Olvi L. Mangasarian,et al.  A generalized Newton method for absolute value equations , 2009, Optim. Lett..

[10]  G. Barles,et al.  Numerical Methods in Finance: Convergence of Numerical Schemes for Degenerate Parabolic Equations Arising in Finance Theory , 1997 .

[11]  Sanyang Liu,et al.  An improved generalized Newton method for absolute value equations , 2016, SpringerPlus.

[12]  Song Wang,et al.  An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation under transaction costs , 2013, Appl. Math. Comput..