Two-loop NF=1 QED Bhabha scattering: Soft emission and numerical evaluation of the differential cross-section

Abstract Recently, we evaluated the virtual cross-section for Bhabha scattering in pure QED, up to corrections of order α 4 ( N F = 1 ) . This calculation is valid for arbitrary values of the squared center of mass energy s and momentum transfer t; the electron and positron mass m was considered a finite, nonvanishing quantity. In the present work, we supplement the previous calculation by considering the contribution of the soft photon emission diagrams to the differential cross-section, up to and including terms of order α 4 ( N F = 1 ) . Adding the contribution of the real corrections to the renormalized virtual ones, we obtain an UV and IR finite differential cross-section; we evaluate this quantity numerically for a significant set of values of the squared center of mass energy s.

[1]  E. Remiddi,et al.  The analytical value of the electron (g − 2) at order α3 in QED , 1996 .

[2]  T.Gehrmann,et al.  Numerical evaluation of two-dimensional harmonic polylogarithms , 2002 .

[3]  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[4]  Giovanni M. Cicuta,et al.  Analytic renormalization via continuous space dimension , 1972 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  M. Bohm,et al.  Radiative corrections to Bhabha scattering at high energies (I): Virtual and soft photon corrections , 1988 .

[7]  R. Gastmans,et al.  Dimensional regularization of the infrared problem , 1973 .

[8]  F. Tkachov A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .

[9]  A. Kotikov Differential equation method: The Calculation of N point Feynman diagrams , 1991 .

[10]  Peter C. Jurs,et al.  Mathematica , 2019, J. Chem. Inf. Comput. Sci..

[11]  R. Bonciani,et al.  Planar box diagram for the (NF=1) 2-loop QED virtual corrections to Bhabha scattering , 2003, hep-ph/0310333.

[12]  G. Passarino,et al.  The Standard Model in the Making: Precision Study of the Electroweak Interactions , 1999 .

[13]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[14]  L. Trentadue,et al.  Hard pair production in large angle Bhabha scattering , 1996 .

[15]  R. Bonciani,et al.  Vertex diagrams for the QED form factors at the 2-loop level , 2003 .

[16]  S. Berman,et al.  Nuovo Cimento , 1983 .

[17]  J. Vermaseren,et al.  Harmonic Polylogarithms , 1999, hep-ph/9905237.

[18]  T.Gehrmann,et al.  Two-Loop Master Integrals for $\gamma^* \to 3$ Jets: The planar topologies , 2000 .

[19]  Master Integrals for the 2-loop QCD virtual corrections to the Forward-Backward Asymmetry , 2003, hep-ph/0311145.

[20]  M. Consoli One-loop corrections to e+e− → e+e− in the weinberg model☆ , 1979 .

[21]  R. Bonciani,et al.  Two-Loop NF = 1 QED Bhabha Scattering Differential Cross Section , 2004, hep-ph/0405275.

[22]  A. Kotikov Differential equations method. New technique for massive Feynman diagram calculation , 1991 .

[23]  P. Osland,et al.  Decorated-box-diagram contributions to Bhabha scattering. (II) , 1993, hep-ph/9304212.

[24]  C. G. Bollini,et al.  Lowest order “divergent” graphs in v-dimensional space , 1972 .

[25]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[26]  Analytic continuation of massless two-loop four-point functions , 2002, hep-ph/0207020.

[27]  L. Dixon,et al.  Two-loop correction to Bhabha scattering , 2000, hep-ph/0010075.

[28]  G. Heinrich,et al.  Analytical evaluation of dimensionally regularized massive on-shell double boxes , 2004, hep-ph/0406053.

[29]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[30]  R. Bonciani,et al.  QED vertex form factors at two loops , 2003, hep-ph/0307295.

[31]  A. Kotikov,et al.  Differential equations method: the calculation of vertex-type Feynman diagrams , 1991 .

[32]  J. F. Ashmore,et al.  A method of gauge-invariant regularization , 1972 .

[33]  S. Laporta,et al.  difference equations , 2001 .