Two-loop NF=1 QED Bhabha scattering: Soft emission and numerical evaluation of the differential cross-section
暂无分享,去创建一个
[1] E. Remiddi,et al. The analytical value of the electron (g − 2) at order α3 in QED , 1996 .
[2] T.Gehrmann,et al. Numerical evaluation of two-dimensional harmonic polylogarithms , 2002 .
[3] Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.
[4] Giovanni M. Cicuta,et al. Analytic renormalization via continuous space dimension , 1972 .
[5] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[6] M. Bohm,et al. Radiative corrections to Bhabha scattering at high energies (I): Virtual and soft photon corrections , 1988 .
[7] R. Gastmans,et al. Dimensional regularization of the infrared problem , 1973 .
[8] F. Tkachov. A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .
[9] A. Kotikov. Differential equation method: The Calculation of N point Feynman diagrams , 1991 .
[10] Peter C. Jurs,et al. Mathematica , 2019, J. Chem. Inf. Comput. Sci..
[11] R. Bonciani,et al. Planar box diagram for the (NF=1) 2-loop QED virtual corrections to Bhabha scattering , 2003, hep-ph/0310333.
[12] G. Passarino,et al. The Standard Model in the Making: Precision Study of the Electroweak Interactions , 1999 .
[13] John Ellis,et al. Int. J. Mod. Phys. , 2005 .
[14] L. Trentadue,et al. Hard pair production in large angle Bhabha scattering , 1996 .
[15] R. Bonciani,et al. Vertex diagrams for the QED form factors at the 2-loop level , 2003 .
[16] S. Berman,et al. Nuovo Cimento , 1983 .
[17] J. Vermaseren,et al. Harmonic Polylogarithms , 1999, hep-ph/9905237.
[18] T.Gehrmann,et al. Two-Loop Master Integrals for $\gamma^* \to 3$ Jets: The planar topologies , 2000 .
[19] Master Integrals for the 2-loop QCD virtual corrections to the Forward-Backward Asymmetry , 2003, hep-ph/0311145.
[20] M. Consoli. One-loop corrections to e+e− → e+e− in the weinberg model☆ , 1979 .
[21] R. Bonciani,et al. Two-Loop NF = 1 QED Bhabha Scattering Differential Cross Section , 2004, hep-ph/0405275.
[22] A. Kotikov. Differential equations method. New technique for massive Feynman diagram calculation , 1991 .
[23] P. Osland,et al. Decorated-box-diagram contributions to Bhabha scattering. (II) , 1993, hep-ph/9304212.
[24] C. G. Bollini,et al. Lowest order “divergent” graphs in v-dimensional space , 1972 .
[25] G. Hooft,et al. Regularization and Renormalization of Gauge Fields , 1972 .
[26] Analytic continuation of massless two-loop four-point functions , 2002, hep-ph/0207020.
[27] L. Dixon,et al. Two-loop correction to Bhabha scattering , 2000, hep-ph/0010075.
[28] G. Heinrich,et al. Analytical evaluation of dimensionally regularized massive on-shell double boxes , 2004, hep-ph/0406053.
[29] F. Tkachov,et al. Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .
[30] R. Bonciani,et al. QED vertex form factors at two loops , 2003, hep-ph/0307295.
[31] A. Kotikov,et al. Differential equations method: the calculation of vertex-type Feynman diagrams , 1991 .
[32] J. F. Ashmore,et al. A method of gauge-invariant regularization , 1972 .
[33] S. Laporta,et al. difference equations , 2001 .