Quantitative Analysis for Perturbed Abstract Inequality Systems in Banach Spaces

Using the error bound results established in the present paper for approximate solutions, we study the stability issues when perturbed by possibly nonaffine smooth maps $E$ for the abstract inequality system $F\ge _K0$ defined by a (possible nonclosed) convex cone $K$ and a Frechet differentiable function $F$ satisfying the (extended) weak $\gamma$-condition. We provide some sufficient conditions, in terms of the information at a solution $x_0$, for ensuring the lower semicontinuity and/or the Lipschitz-like continuity at $x_0$ of the solution mapping for the perturbed system $F+E\ge _K0$ with smooth perturbation $E$. Explicit upper bounds of the Lipschitz-like moduli are also provided.

[1]  J. F. Bonnans,et al.  Sensitivity analysis of parametrized programs under cone constraints , 1992 .

[2]  Marco A. López,et al.  Stability and Well-Posedness in Linear Semi-Infinite Programming , 1999, SIAM J. Optim..

[3]  Chong Li,et al.  Convergence analysis of the Gauss-Newton method for convex inclusion and convex-composite optimization problems , 2012 .

[4]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[5]  Marco A. López,et al.  Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations , 2007, SIAM J. Optim..

[6]  R. Tyrrell Rockafellar,et al.  Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..

[7]  Diethard Klatte,et al.  Aubin property and uniqueness of solutions in cone constrained optimization , 2013, Math. Methods Oper. Res..

[8]  S. M. Robinson Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .

[9]  M. J. Cánovas,et al.  Calmness of the Feasible Set Mapping for Linear Inequality Systems , 2014 .

[10]  María J. Cánovas,et al.  Regularity modulus of arbitrarily perturbed linear inequality systems , 2008 .

[11]  Marco A. López,et al.  Metric regularity of semi-infinite constraint systems , 2005, Math. Program..

[12]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[13]  Diethard Klatte,et al.  Optimization methods and stability of inclusions in Banach spaces , 2008, Math. Program..

[14]  F. Javier Toledo-Moreo,et al.  Calmness modulus of fully perturbed linear programs , 2016, Math. Program..

[15]  Jean-Pierre Dedieu,et al.  Approximate Solutions of Analytic Inequality Systems , 2000, SIAM J. Optim..

[16]  Marco A. López,et al.  Calmness Modulus of Linear Semi-infinite Programs , 2013, SIAM J. Optim..

[17]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[18]  M. Nashed,et al.  A unified approach to generalized inverses of linear operators: II. Extremal and proximal properties , 1974 .

[19]  S. M. Robinson Normed convex processes , 1972 .

[20]  Nguyen Dong Yen,et al.  Stability of Linear-Quadratic Minimization over Euclidean Balls , 2012, SIAM J. Optim..

[21]  Uriel G. Rothblum,et al.  Approximations to Solutions to Systems of Linear Inequalities , 1995, SIAM J. Matrix Anal. Appl..

[22]  R. Tyrrell Rockafellar,et al.  Monotone processes of convex and concave type , 1967 .

[23]  Chong Li,et al.  Majorizing Functions and Convergence of the Gauss--Newton Method for Convex Composite Optimization , 2007, SIAM J. Optim..

[24]  Vaithilingam Jeyakumar,et al.  Inequality systems and optimization , 1991 .

[25]  Nondegeneracy and Quantitative Stability of Parameterized Optimization Problems with Multiple Solutions , 1998, SIAM J. Optim..

[26]  Duong Thi Kim Huyen,et al.  Coderivatives and the Solution Map of a Linear Constraint System , 2016, SIAM J. Optim..

[27]  Olvi L. Mangasarian,et al.  Set Containment Characterization , 2002, J. Glob. Optim..

[28]  Guoyin Li,et al.  Global error bounds for piecewise convex polynomials , 2013, Math. Program..

[29]  Boris S. Mordukhovich,et al.  Variational Analysis in Semi-Infinite and Infinite Programming, II: Necessary Optimality Conditions , 2010, SIAM J. Optim..

[30]  Jonathan M. Borwein,et al.  Notions of Relative Interior in Banach Spaces , 2003 .

[31]  Jen-Chih Yao,et al.  Linear Regularity and Linear Convergence of Projection-Based Methods for Solving Convex Feasibility Problems , 2018 .

[32]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[33]  S. M. Robinson Extension of Newton's method to nonlinear functions with values in a cone , 1972 .

[34]  F. Javier Toledo-Moreo,et al.  Calmness of the Argmin Mapping in Linear Semi-Infinite Optimization , 2014, J. Optim. Theory Appl..

[35]  Chong Li,et al.  Newton's Method for Underdetermined Systems of Equations Under the γ-Condition , 2007 .

[36]  K. Ng,et al.  Extended Newton methods for conic inequalities: Approximate solutions and the extended Smale α-theory , 2016 .

[37]  René Henrion,et al.  Calmness of constraint systems with applications , 2005, Math. Program..

[38]  Jean-Pierre Aubin,et al.  Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..

[39]  Chong Li,et al.  Approximate Solutions for Abstract Inequality Systems , 2013, SIAM J. Optim..

[40]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[41]  P. L. Combettes,et al.  The Convex Feasibility Problem in Image Recovery , 1996 .

[42]  Guoyin Li On the Asymptotically Well Behaved Functions and Global Error Bound for Convex Polynomials , 2010, SIAM J. Optim..

[43]  Helmut Gfrerer,et al.  On Lipschitzian Properties of Implicit Multifunctions , 2016, SIAM J. Optim..

[44]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[45]  Chong Li,et al.  On Convergence Rates of Linearized Proximal Algorithms for Convex Composite Optimization with Applications , 2016, SIAM J. Optim..

[46]  Olvi L. Mangasarian,et al.  Knowledge-Based Linear Programming , 2005, SIAM J. Optim..

[47]  R. Rockafellar,et al.  Lipschitzian properties of multifunctions , 1985 .

[48]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[49]  J. Pang,et al.  On the Boundedness and Stability of Solutions to the Affine Variational Inequality Problem , 1994 .

[50]  Marco A. López,et al.  Stability Theory for Linear Inequality Systems , 1996, SIAM J. Matrix Anal. Appl..

[51]  S. Smale,et al.  Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .

[52]  Diethard Klatte,et al.  Strong Lipschitz Stability of Stationary Solutions for Nonlinear Programs and Variational Inequalities , 2005, SIAM J. Optim..