A fully packaged multi-channel cryogenic module for optical quantum memories

Realizing a quantum network will require long-lived quantum memories with optical interfaces incorporated into a scalable architecture. Color centers quantum emitters in diamond have emerged as a promising memory modality due to their optical properties and compatibility with scalable integration. However, developing a scalable color center emitter module requires significant advances in the areas of heterogeneous integration and cryogenically compatible packaging. Here we report on a cryogenically stable and network compatible quantum-emitter module for memory use. This quantum-emitter module is a significant development towards advanced quantum networking applications such as distributed sensing and processing.

[1]  H. Lo,et al.  Quantum repeaters: From quantum networks to the quantum internet , 2022, Reviews of Modern Physics.

[2]  J. Carolan,et al.  Ultra-low loss quantum photonic circuits integrated with single quantum emitters , 2022, Nature communications.

[3]  B. Lanyon,et al.  Entanglement of Trapped-Ion Qubits Separated by 230 Meters. , 2022, Physical review letters.

[4]  Qiang Zhang,et al.  Postselected Entanglement between Two Atomic Ensembles Separated by 12.5 km. , 2022, Physical review letters.

[5]  M. Lukin,et al.  Robust multi-qubit quantum network node with integrated error detection , 2022, Science.

[6]  M. Spiropulu,et al.  Design and Implementation of the Illinois Express Quantum Metropolitan Area Network , 2022, IEEE Transactions on Quantum Engineering.

[7]  Yang Wang,et al.  Field-Deployable Quantum Memory for Quantum Networking , 2022, Physical Review Applied.

[8]  J. Renema,et al.  High Fidelity 12-Mode Quantum Photonic Processor Operating at InGaAs Quantum Dot Wavelength , 2022, Optica Advanced Photonics Congress 2022.

[9]  Jaco P. J. Morits,et al.  Telecom-Band Quantum Interference of Frequency-Converted Photons from Remote Detuned NV Centers , 2022, PRX Quantum.

[10]  H. Weinfurter,et al.  Entangling single atoms over 33 km telecom fibre , 2021, Nature.

[11]  D. P. Nadlinger,et al.  An elementary quantum network of entangled optical atomic clocks , 2021, Nature.

[12]  Austin M. Ferrenti,et al.  Erbium-implanted materials for quantum communication applications , 2021, Physical Review B.

[13]  N. T. Son,et al.  Five-second coherence of a single spin with single-shot readout in silicon carbide , 2021, Science advances.

[14]  G. Roelkens,et al.  High-pulse-energy III-V-on-silicon-nitride mode-locked laser , 2021, APL Photonics.

[15]  Antariksha Das,et al.  Long-Lived Solid-State Optical Memory for High-Rate Quantum Repeaters. , 2021, Physical review letters.

[16]  Kaushik P. Seshadreesan,et al.  Multiplexed quantum repeaters based on dual-species trapped-ion systems , 2021, Physical Review A.

[17]  Noel H. Wan,et al.  Quantum networks based on color centers in diamond , 2021, Journal of Applied Physics.

[18]  Ivan B. Djordjevic,et al.  Entanglement Distribution and Routing in a Multi-node Quantum Network Testbed , 2021, 2021 Conference on Lasers and Electro-Optics (CLEO).

[19]  Noel H. Wan,et al.  A low-noise telecom interface for silicon-vacancy quantum network nodes , 2021, Conference on Lasers and Electro-Optics.

[20]  Marianneza Chatzipetrou,et al.  A Miniature Bio-Photonics Companion Diagnostics Platform for Reliable Cancer Treatment Monitoring in Blood Fluids , 2021, Sensors.

[21]  David A. B. Miller,et al.  Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies , 2021 .

[22]  Laura dos Santos Martins,et al.  Realization of a multinode quantum network of remote solid-state qubits , 2021, Science.

[23]  Gerhard Rempe,et al.  A quantum-logic gate between distant quantum-network modules , 2021, Science.

[24]  D. Katramatos,et al.  An elementary 158 km long quantum network connecting room temperature quantum memories , 2021, 2101.12742.

[25]  S. Grandi,et al.  Telecom-heralded entanglement between multimode solid-state quantum memories , 2021, Nature.

[26]  J. Chiaverini,et al.  Integrated multi-wavelength control of an ion qubit , 2020, Nature.

[27]  T. Ohshima,et al.  Universal coherence protection in a solid-state spin qubit , 2020, Science.

[28]  Stephanie Wehner,et al.  A quantum router architecture for high-fidelity entanglement flows in quantum networks , 2020, npj Quantum Information.

[29]  Angela Sara Cacciapuoti,et al.  Towards a Distributed Quantum Computing Ecosystem , 2020, IET Quantum Commun..

[30]  K. Mehta,et al.  Integrated optical multi-ion quantum logic , 2020, Nature.

[31]  Dirk Englund,et al.  Large-scale integration of artificial atoms in hybrid photonic circuits , 2020, Nature.

[32]  D. Englund,et al.  Experimental demonstration of memory-enhanced quantum communication , 2019, Nature.

[33]  Jonathan M. Kindem,et al.  Control and single-shot readout of an ion embedded in a nanophotonic cavity , 2019, Nature.

[34]  D. J. Twitchen,et al.  A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute , 2019, Physical Review X.

[35]  Rajeev J Ram,et al.  Versatile Silicon Nitride and Alumina Integrated Photonic Platforms for the Ultraviolet to Short-Wave Infrared , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Noel H. Wan,et al.  Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. , 2018, Physical review letters.

[37]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[38]  M. Lukin,et al.  Optical Interferometry with Quantum Networks. , 2018, Physical review letters.

[39]  J. Thompson,et al.  Atomic Source of Single Photons in the Telecom Band. , 2018, Physical review letters.

[40]  Marko Loncar,et al.  Strain engineering of the silicon-vacancy center in diamond , 2018, Physical Review B.

[41]  N. Kalb,et al.  One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment , 2018, Nature Communications.

[42]  Dirk Englund,et al.  Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond , 2018, Applied Physics Letters.

[43]  Jonathan M. Kindem,et al.  Nanophotonic rare-earth quantum memory with optically controlled retrieval , 2017, Science.

[44]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[45]  D. Trotter,et al.  Metropolitan quantum key distribution with silicon photonics , 2017, 1708.00434.

[46]  Dirk Englund,et al.  Rectangular Photonic Crystal Nanobeam Cavities in Bulk Diamond , 2017, 1704.07918.

[47]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[48]  N. Harris,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2015, Nature Communications.

[49]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[50]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[51]  U. Levy,et al.  Nanoscale light–matter interactions in atomic cladding waveguides , 2012, Nature Communications.

[52]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[53]  K. R. Williams,et al.  Etch rates for micromachining processing-Part II , 2003 .

[54]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[55]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[56]  David J. Starling,et al.  Integrating Nearly-Indistinguishable Quantum Emitters onto a Photonic Interposer , 2023, Conference on Lasers and Electro-Optics.

[57]  D. Englund,et al.  Scalable Photonic Integration of Long-Lived Tin-Vacancy Memories at 1.3 K , 2022, Quantum 2.0 Conference and Exhibition.

[58]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.