Error Analysis for a Finite Element Approximation of Elliptic Dirichlet Boundary Control Problems

We consider the Galerkin finite element approximation of an elliptic Dirichlet boundary control model problem governed by the Laplacian operator. The analytical setting of this problem uses $L^2$ controls and a “very weak” formulation of the state equation. However, the corresponding finite element approximation uses standard continuous trial and test functions. For this approximation, we derive a priori error estimates of optimal order, which are confirmed by numerical experiments. The proofs employ duality arguments and known results from the $L^p$ error analysis for the finite element Dirichlet projection.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[3]  Martin Berggren,et al.  Approximations of Very Weak Solutions to Boundary-Value Problems , 2003, SIAM J. Numer. Anal..

[4]  Karl Kunisch,et al.  Constrained Dirichlet Boundary Control in L2 for a Class of Evolution Equations , 2007, SIAM J. Control. Optim..

[5]  L. R. Scott,et al.  Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .

[6]  Jean-Pierre Raymond,et al.  The Stability in W s,p (Γ) Spaces of L 2-Projections on Some Convex Sets , 2006 .

[7]  G N Jakovlev,et al.  TRACES OF FUNCTIONS IN THE SPACE $ W^l_p$ ON PIECEWISE SMOOTH SURFACES , 1967 .

[8]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[9]  Ridgway Scott,et al.  A sharp form of the Sobolev trace theorems , 1977 .

[10]  Ridgway Scott,et al.  Optimal L°° Estimates for the Finite Element Method on Irregular Meshes* , 2010 .

[11]  J. Rossmann On two classes of weighted Sobolev-Slobodetskiĭ spaces in a dihedral angle , 1992 .

[12]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[13]  Zhonghai Ding,et al.  A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .

[14]  Jean-Pierre Raymond,et al.  Penalization of Dirichlet optimal control problems , 2009 .

[15]  David Jerison,et al.  The Neumann problem on Lipschitz domains , 1981 .

[16]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[17]  S. V. Parter,et al.  Elliptic equations , 1967 .

[18]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[19]  N. S. Barnett,et al.  Private communication , 1969 .

[20]  J. Rossmann,et al.  Elliptic Equations in Polyhedral Domains , 2010 .

[21]  V. Zh. Dumanyan,et al.  Solvability of the Dirichlet problem for second-order elliptic equations , 2014 .

[22]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[23]  G. Burton Sobolev Spaces , 2013 .

[24]  Zhongwei Shen,et al.  Boundary Value Problems on Lipschitz Domains , 2008 .

[25]  Jean-Pierre Raymond,et al.  ESTIMATES FOR THE NUMERICAL APPROXIMATION OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR ELLIPTIC EQUATIONS , 2006 .