Computational modeling of polyurea-coated composites subjected to blast loads

This manuscript presents computational modeling and simulation of woven E-glass fiber-reinforced vinyl-ester (EVE) composites and polyurea-coated EVE composites subjected to blast loading. The response of polyurea is idealized based on a temperature- and pressure-dependent visco-elastic constitutive model. The response of the EVE layers is modeled based on a multiscale computational damage model that includes adiabatic heating and rate-dependence in the constituent (i.e. matrix and fiber) behavior. Experimentally validated numerical simulations of EVE composite and polyurea-coated EVE composite specimens subjected to blast loading indicate that the proposed models are capable of accurately capturing the inelastic and failure characteristics of the specimens. The significant shock mitigation effect of polyurea coating is numerically demonstrated. Predictive simulations suggest better blast mitigation characteristics with increasing polyurea thickness and confining the perimeter of the polyurea layers.

[1]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—II. Computational aspects , 1987 .

[2]  H. Askes,et al.  Elasticity Theories with Higher-order Gradients of Inertia and Stiffness for the Modelling of Wave Dispersion in Laminates , 2007 .

[3]  A. Cemal Eringen,et al.  Nonlinear theory of micro-elastic solids—II☆ , 1964 .

[4]  Jacob Fish,et al.  Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials , 2007 .

[5]  W. C. Bell,et al.  Blast-wave impact-mitigation capability of polyurea when used as helmet suspension-pad material , 2010 .

[6]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[7]  K. Lam,et al.  Analysis of clamped laminated plates subjected to conventional blast , 1994 .

[8]  Gerald Nurick,et al.  Mechanical behaviour of glass and carbon fibre reinforced composites at varying strain rates , 2004 .

[9]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[10]  P. Perzyna Fundamental Problems in Viscoplasticity , 1966 .

[11]  George Z. Voyiadjis,et al.  A Finite Strain Plastic-damage Model for High Velocity Impacts using Combined Viscosity and Gradient Localization Limiters: Part II - Numerical Aspects and Simulations , 2006 .

[12]  C. Oskay,et al.  A Multiscale Failure Model for Analysis of Thin Heterogeneous Plates , 2010 .

[13]  S. Nemat-Nasser,et al.  Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments , 2010 .

[14]  C. M. Roland,et al.  High strain rate mechanical behavior of polyurea , 2007 .

[15]  M. Grujicic,et al.  Computational Investigation of Impact Energy Absorption Capability of Polyurea Coatings via Deformation-Induced Glass Transition , 2010 .

[16]  Mary C. Boyce,et al.  Large deformation rate-dependent stress–strain behavior of polyurea and polyurethanes , 2006 .

[17]  A. Cemal Eringen,et al.  NONLINEAR THEORY OF SIMPLE MICRO-ELASTIC SOLIDS-I , 1964 .

[18]  B. K. Sarkar,et al.  Impact fatigue of glass fibre: vinylester resin composites , 2001 .

[19]  Fadil Santosa,et al.  A dispersive effective medium for wave propagation in periodic composites , 1991 .

[20]  Lee Davison,et al.  Fundamentals of Shock Wave Propagation in Solids , 2008 .

[21]  L. Librescu,et al.  Response of laminated composite flat panels to sonic boom and explosive blast loadings , 1990 .

[22]  J. Engelbrecht,et al.  Waves in microstructured materials and dispersion , 2005 .

[23]  Arun Shukla,et al.  Mechanical behavior and damage evolution in E-glass vinyl ester and carbon composites subjected to static and blast loads , 2008 .

[24]  Fernando Fraternali,et al.  Computational assessment of ballistic impact on a high strength structural steel/polyurea composite plate , 2009 .

[25]  Hao Yan,et al.  Compression-after-impact response of woven fiber-reinforced composites , 2010 .

[26]  A. Lukyanov An equation of state of a carbon-fibre epoxy composite under shock loading , 2009, 0911.4488.

[27]  S. Nemat-Nasser,et al.  An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects , 2006 .

[28]  C. Oskay,et al.  Symmetric Mesomechanical Model for Failure Analysis of Heterogeneous Materials , 2010 .

[29]  Ted Belytschko,et al.  Penetration of DH-36 steel plates with and without polyurea coating , 2010 .

[30]  D. Fragiadakis,et al.  Segmental dynamics of polyurea: Effect of stoichiometry , 2010 .

[31]  S. Nemat-Nasser,et al.  Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments , 2010 .

[32]  M. Ortiz,et al.  A variational constitutive model for soft biological tissues. , 2008, Journal of biomechanics.

[33]  G. Dvorak,et al.  A blast-tolerant sandwich plate design with a polyurea interlayer , 2006 .

[34]  Mario Pagliaro,et al.  Fundamentals of Shock Wave Propagation in Solids , 2008 .

[35]  Jean-François Dubé,et al.  Rate Dependent Damage Model for Concrete in Dynamics , 1996 .

[36]  Chunyu Li,et al.  A hyper-viscoelastic constitutive model for polyurea , 2009 .

[37]  J. Fish,et al.  A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales , 2001 .

[38]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[39]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1989 .

[40]  Kenji Oguni,et al.  Dynamic compressive behavior of unidirectional E-glass/vinylester composites , 2001 .

[41]  C. Sun,et al.  Modeling micro-inertia in heterogeneous materials under dynamic loading , 2002 .

[42]  Srinivasan Arjun Tekalur,et al.  Blast resistance of polyurea based layered composite materials , 2008 .

[43]  Rashid K. Abu Al-Rub,et al.  A Finite Strain Plastic-damage Model for High Velocity Impact using Combined Viscosity and Gradient Localization Limiters: Part I - Theoretical Formulation , 2006 .