The formation of merging black holes with masses beyond 30 M_⊙ at solar metallicity

[1]  S. Vadawale,et al.  Revisiting the Galactic X-Ray Binary MAXI J1631–479: Implications for High Inclination and a Massive Black Hole , 2022, The Astrophysical Journal.

[2]  H. Rix,et al.  A Sun-like star orbiting a black hole , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  A. Dotter,et al.  X-ray luminosity function of high-mass X-ray binaries: Studying the signatures of different physical processes using detailed binary evolution calculations , 2022, Astronomy & Astrophysics.

[4]  T. Callister,et al.  No Evidence that the Majority of Black Holes in Binaries Have Zero Spin , 2022, The Astrophysical Journal Letters.

[5]  A. Katsaggelos,et al.  POSYDON: A General-purpose Population Synthesis Code with Detailed Binary-evolution Simulations , 2022, The Astrophysical Journal Supplement Series.

[6]  I. Mandel,et al.  Impact of massive binary star and cosmic evolution on gravitational wave observations II: Double compact object rates and properties , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  Jim W. Barrett,et al.  Rapid Stellar and Binary Population Synthesis with COMPAS , 2021, The Astrophysical Journal Supplement Series.

[8]  J. Vink Theory and Diagnostics of Hot Star Mass Loss , 2021, Annual Review of Astronomy and Astrophysics.

[9]  M. Zevin,et al.  Probing the progenitors of spinning binary black-hole mergers with long gamma-ray bursts , 2021, Astronomy & Astrophysics.

[10]  I. Mandel,et al.  Cygnus X-1 contains a 21–solar mass black hole—Implications for massive star winds , 2021, Science.

[11]  C. Berry,et al.  The impact of mass-transfer physics on the observable properties of field binary black hole populations , 2020, Astronomy & Astrophysics.

[12]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[13]  S. Stevenson,et al.  The fates of massive stars: exploring uncertainties in stellar evolution with metisse , 2020, 2005.13177.

[14]  T. Sukhbold,et al.  Towards a realistic explosion landscape for binary population synthesis , 2020, 2005.03055.

[15]  R. O’Shaughnessy,et al.  The Formation of a 70 M⊙ Black Hole at High Metallicity , 2019, The Astrophysical Journal.

[16]  M. Zevin,et al.  COSMIC Variance in Binary Population Synthesis , 2019, The Astrophysical Journal.

[17]  J. Brinchmann,et al.  A stellar census in globular clusters with MUSE: multiple populations chemistry in NGC 2808 , 2019, Astronomy & Astrophysics.

[18]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[19]  I. Mandel,et al.  The origin of spin in binary black holes , 2019, Astronomy & Astrophysics.

[20]  Jim W. Barrett,et al.  The effect of the metallicity-specific star formation history on double compact object mergers , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation , 2019, The Astrophysical Journal Supplement Series.

[22]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[23]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[24]  Jim W. Barrett,et al.  Accuracy of inference on the physics of binary evolution from gravitational-wave observations , 2017, 1711.06287.

[25]  N. Smith Luminous blue variables and the fates of very massive stars , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics ( ): Convective Boundaries, Element Diffusion, and Massive Star Explosions , 2017, 1710.08424.

[27]  S. Larson,et al.  Revealing Black Holes with Gaia , 2017, 1710.04657.

[28]  Ilya Mandel,et al.  University of Birmingham Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves , 2017 .

[29]  S. D. Mink,et al.  Systematic survey of the effects of wind mass loss algorithms on the evolution of single massive stars , 2017 .

[30]  S. D. Mink,et al.  Forming short-period Wolf–Rayet X-ray binaries and double black holes through stable mass transfer , 2017, 1701.02355.

[31]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[32]  J. Gladstone,et al.  WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES , 2015, 1512.00778.

[33]  F. Bauer,et al.  BlackCAT: A catalogue of stellar-mass black holes in X-ray transients , 2015, 1510.08869.

[34]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[35]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[36]  N. Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.

[37]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[38]  N. Mowlavi,et al.  Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.

[39]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[40]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[41]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[42]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[43]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[44]  C. Tout,et al.  Stellar evolution models for Z = 0.0001 to 0.03 (Pols+ 1998) , 1998 .

[45]  Kris Davidson,et al.  THE LUMINOUS BLUE VARIABLES: ASTROPHYSICAL GEYSERS , 1994 .

[46]  A. Maeder,et al.  The evolution of massive stars with mass loss , 1986 .

[47]  H. Lamers,et al.  UvA-DARE ( Digital Academic Repository ) Mass-loss predictions for 0 and B stars as a fuction of metallicity , 2022 .

[48]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.