Testing the violation of the equivalence principle in the electromagnetic sector and its consequences in f(T) gravity

A violation of the distance-duality relation is directly linked with a temporal variation of the electromagnetic fine-structure constant. We consider a number of well-studied f(T) gravity models and we revise the theoretical prediction of their corresponding induced violation of the distance-duality relationship. We further extract constraints on the involved model parameters through fine-structure constant variation data, alongside with supernovae data, and Hubble parameter measurements. Moreover, we constrain the evolution of the effective f(T) gravitational constant. Finally, we compare with revised constraints on the phenomenological parametrisations of the violation of the equivalence principle in the electromagnetic sector.

[1]  M. Hohmann Teleparallel gravity , 2022, 2207.06438.

[2]  R. Holanda,et al.  Variation in the fine-structure constant and the distance-duality relation , 2020, Journal of Cosmology and Astroparticle Physics.

[3]  H. Arnold,et al.  Virgo , 2020, The Photographic Atlas of the Stars.

[4]  Yi-Fu Cai,et al.  Testing the equivalence principle via the shadow of black holes , 2019, 1912.12629.

[5]  A. Golovnev,et al.  Disformal Transformations in Modified Teleparallel Gravity , 2019, Symmetry.

[6]  J. Chluba,et al.  Updated fundamental constant constraints from Planck 2018 data and possible relations to the Hubble tension , 2019, 1912.03986.

[7]  M. Fairbairn,et al.  Improved BBN constraints on the variation of the gravitational constant , 2019, The European Physical Journal C.

[8]  T. Koivisto,et al.  An axiomatic purification of gravity , 2019, 1909.10415.

[9]  Yi-Fu Cai,et al.  New test on General Relativity using galaxy-galaxy lensing with astronomical surveys , 2019, 1907.12225.

[10]  E. Saridakis,et al.  Bayesian analysis of f(T) gravity using fσ8 data , 2019, Physical Review D.

[11]  Robert Eliot Spero,et al.  The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky. , 2019 .

[12]  R. Beaton,et al.  The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch , 2019, The Astrophysical Journal.

[13]  Stefan Hilbert,et al.  H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  R. Holanda,et al.  Variation in the fine-structure constant, distance-duality relation and the next generation of high-resolution spectrograph , 2019, 1907.02118.

[15]  C. Pfeifer,et al.  On the Gauge Fixing in the Hamiltonian Analysis of General Teleparallel Theories , 2019, Universe.

[16]  M. Hohmann Disformal Transformations in Scalar–Torsion Gravity , 2019, Universe.

[17]  S. Bahamonde,et al.  Can Horndeski theory be recast using teleparallel gravity? , 2019, Physical Review D.

[18]  S. Capozziello,et al.  Extended gravity cosmography , 2019, International Journal of Modern Physics D.

[19]  Jun Chen,et al.  Testing the cosmic distance-duality relation from future gravitational wave standard sirens , 2019, Physical Review D.

[20]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[21]  Shuo Cao,et al.  Testing the Etherington distance duality relation at higher redshifts: Combined radio quasar and gravitational wave data , 2019, Physical Review D.

[22]  R. Holanda,et al.  Galaxy clusters and a possible variation of the fine structure constant , 2019, Journal of Cosmology and Astroparticle Physics.

[23]  J. Luscombe Relativistic cosmology , 2018, Core Principles of Special and General Relativity.

[24]  C. Pfeifer,et al.  Hamiltonian and primary constraints of new general relativity , 2018, Physical Review D.

[25]  C. Boehmer,et al.  Teleparallel theories of gravity: illuminating a fully invariant approach , 2018, Classical and Quantum Gravity.

[26]  M. Nakahara Geometry, Topology and Physics , 2018 .

[27]  Jailson S. Alcaniz,et al.  Primordial gravitational waves and the H0 -tension problem , 2018, Physical Review D.

[28]  Hai-Nan Lin,et al.  New constraints on the distance duality relation from the local data , 2018, Monthly Notices of the Royal Astronomical Society.

[29]  X. Deng Probing f(T) gravity with gravitational time advancement , 2018, Classical and Quantum Gravity.

[30]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[31]  Mustapha Ishak,et al.  Testing general relativity in cosmology , 2018, Living reviews in relativity.

[32]  J. Said,et al.  Galactic rotation dynamics in f(T) gravity , 2018, The European Physical Journal C.

[33]  F. Melia A comparison of the Rh = ct and ΛCDM cosmologies using the cosmic distance duality relation , 2018, Monthly Notices of the Royal Astronomical Society.

[34]  S. Capozziello,et al.  The gravitation energy–momentum pseudotensor: The cases of F(R) and F(T) gravity , 2018, International Journal of Geometric Methods in Modern Physics.

[35]  E. Saridakis,et al.  Gravitational waves in modified teleparallel theories , 2018, Physical Review D.

[36]  Baojiu Li,et al.  Constraining the time variation of Newton's constant G with gravitational-wave standard sirens and supernovae , 2018, Journal of Cosmology and Astroparticle Physics.

[37]  Hongwei Yu,et al.  Testing Viable f(T) Models with Current Observations , 2018 .

[38]  T. Peters Gravitation , 2018, PHYSIK.

[39]  G. Desvignes,et al.  Tests of gravitational symmetries with pulsar binary J1713+0747 , 2018, Monthly Notices of the Royal Astronomical Society.

[40]  Rafael C. Nunes Structure formation in f(T) gravity and a solution for H0 tension , 2018, 1802.02281.

[41]  C. Martins,et al.  Current and future constraints on extended Bekenstein-type models for a varying fine-structure constant , 2018, 1801.08089.

[42]  Yi-Fu Cai,et al.  f (T ) gravity after GW170817 and GRB170817A , 2018, 1801.05827.

[43]  Jürgen Müller,et al.  Relativistic tests with lunar laser ranging , 2018 .

[44]  M. Maggiore,et al.  Gravitational-wave luminosity distance in modified gravity theories , 2017, Physical Review D.

[45]  S. Capozziello,et al.  Gravitational waves in modified teleparallel theories of gravity , 2017, The European physical journal. C, Particles and fields.

[46]  O. Bertolami,et al.  Cosmic transients, Einstein’s Equivalence Principle and dark matter halos , 2017, Physics of the Dark Universe.

[47]  Bin Hu,et al.  Constraints on the cosmic distance duality relation with simulated data of gravitational waves from the Einstein Telescope , 2017, Astroparticle Physics.

[48]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[49]  C. Martins The status of varying constants: a review of the physics, searches and implications , 2017, Reports on progress in physics. Physical Society.

[50]  M. Biesiada,et al.  New observational constraints on f(T) cosmology from radio quasars , 2017, 1708.08603.

[51]  S. Capozziello,et al.  Model-independent reconstruction of f(T) teleparallel cosmology , 2017, 1706.02962.

[52]  A. Paliathanasis De Sitter and scaling solutions in a higher-order modified teleparallel theory , 2017, 1706.02662.

[53]  J. Said,et al.  Stability of the flat FLRW metric in f(T) gravity , 2016, 1701.00134.

[54]  S. Capozziello,et al.  Noether symmetry approach in f(T, B) teleparallel cosmology , 2016, The European physical journal. C, Particles and fields.

[55]  V. Busti,et al.  Probing the distance-duality relation with high-z data , 2016, 1611.09426.

[56]  Xin Zhang,et al.  Comparison of dark energy models after Planck 2015 , 2016, The European Physical Journal C.

[57]  E. Saridakis,et al.  New observational constraints on f(R) gravity from cosmic chronometers , 2016, 1610.07518.

[58]  P. Tiwari Constraining axionlike particles using the distance-duality relation , 2016, 1610.06583.

[59]  M. Zubair,et al.  Thermodynamics and cosmological reconstruction in $f(T,B)$ gravity , 2016, 1609.08373.

[60]  U. Cambridge,et al.  High-precision limit on variation in the fine-structure constant from a single quasar absorption system , 2016, 1609.03860.

[61]  Samuel Hinton,et al.  ChainConsumer , 2016, J. Open Source Softw..

[62]  H. C. Stempels,et al.  EELT-HIRES the high-resolution spectrograph for the E-ELT , 2016, Astronomical Telescopes + Instrumentation.

[63]  E. Saridakis,et al.  Observational constraints on f(T) gravity from varying fundamental constants , 2016, 1608.01960.

[64]  Xin Zhang,et al.  Comparison of dark energy models after Planck 2015 , 2016, 1607.06262.

[65]  A. Lipovka,et al.  Variation of the fine structure constant , 2016 .

[66]  J. Xia,et al.  Constraints on Cosmic Distance Duality Relation from Cosmological Observations , 2016, 1606.08102.

[67]  M. Bainbridge,et al.  Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant , 2016, 1606.07393.

[68]  University of California,et al.  Precise limits on cosmological variability of the fine-structure constant with zinc and chromium quasar absorption lines , 2016, 1606.06293.

[69]  M. Ruggiero,et al.  Solar System tests in f(T) gravity , 2016, 1605.07614.

[70]  D. Kocevski,et al.  Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data , 2016, 1605.03053.

[71]  Pier Stefano Corasaniti,et al.  Statistical Test of Distance–Duality Relation with Type Ia Supernovae and Baryon Acoustic Oscillations , 2016, The Astrophysical Journal.

[72]  L. Iorio,et al.  Constraining the Schwarzschild-de Sitter Solution in Models of Modified Gravity , 2016, 1603.02052.

[73]  L. Baudis Dark matter detection , 2016 .

[74]  M. Wright Conformal transformations in modified teleparallel theories of gravity revisited , 2016, 1602.05764.

[75]  Daniel Thomas,et al.  A 6% measurement of the Hubble parameter at z∼0.45: direct evidence of the epoch of cosmic re-acceleration , 2016, 1601.01701.

[76]  O. Minazzoli,et al.  Dilatons with intrinsic decouplings , 2015, 1512.05232.

[77]  S. Capozziello,et al.  f(T) teleparallel gravity and cosmology , 2015, Reports on progress in physics. Physical Society.

[78]  K. Liao,et al.  THE DISTANCE DUALITY RELATION FROM STRONG GRAVITATIONAL LENSING , 2015, 1511.01318.

[79]  E. Saridakis,et al.  The covariant formulation of f(T) gravity , 2015, 1510.08432.

[80]  N. Nunes,et al.  The variation of the fine-structure constant from disformal couplings , 2015, 1510.00200.

[81]  C. Boehmer,et al.  Modified teleparallel theories of gravity , 2015, 1508.05120.

[82]  P. González,et al.  Teleparallel Equivalent of Lovelock Gravity , 2015, 1508.01174.

[83]  V. Busti,et al.  Two new tests to the distance duality relation with galaxy clusters , 2015, 1506.00145.

[84]  L. Iorio,et al.  Constraining f(T) gravity in the Solar System , 2015, 1505.06996.

[85]  Michele Moresco Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼ 2 , 2015, 1503.01116.

[86]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[87]  M. Ruggiero,et al.  Weak-Field Spherically Symmetric Solutions in f(T) gravity , 2015, 1501.02198.

[88]  O. Minazzoli,et al.  Observables in theories with a varying fine structure constant , 2014, 1409.7273.

[89]  P. Petitjean,et al.  The UVES Large Program for testing fundamental physics – III. Constraints on the fine-structure constant from three telescopes , 2014, 1409.1923.

[90]  O. Minazzoli,et al.  Breaking of the equivalence principle in the electromagnetic sector and its cosmological signatures , 2014, 1406.6187.

[91]  L. Cowie,et al.  CONSTRAINING THE VARIATION OF THE FINE-STRUCTURE CONSTANT WITH OBSERVATIONS OF NARROW QUASAR ABSORPTION LINES , 2014, 1406.3628.

[92]  O. Minazzoli,et al.  Late-time cosmology of a scalar-tensor theory with a universal multiplicative coupling between the scalar field and the matter Lagrangian , 2014, 1404.4266.

[93]  E. Saridakis,et al.  Teleparallel equivalent of Gauss-Bonnet gravity and its modifications , 2014, 1404.2249.

[94]  V. Busti,et al.  Probing cosmic opacity at high redshifts with gamma-ray bursts , 2014, 1402.2161.

[95]  Tong-Jie Zhang,et al.  AN IMPROVED METHOD TO TEST THE DISTANCE–DUALITY RELATION , 2013, 1310.0869.

[96]  M. Mannetta,et al.  ESPRESSO — An Echelle SPectrograph for Rocky Exoplanets Search and Stable Spectroscopic Observations , 2013 .

[97]  E. Saridakis,et al.  Viable $f(T)$ models are practically indistinguishable from $\Lambda$CDM , 2013, 1308.6142.

[98]  J. Barrow,et al.  General Dynamics of Varying-Alpha Universes , 2013, 1307.6816.

[99]  O. Minazzoli Conservation laws in theories with universal gravity/matter coupling , 2013, 1307.1590.

[100]  T. M. Evans,et al.  The UVES Large Program for testing fundamental physics I. Bounds on a change in α towards quasar HE 2217-2818 , 2013, 1305.1884.

[101]  Hongwei Yu,et al.  Cosmic opacity: Cosmological-model-independent tests and their impact on cosmic acceleration , 2013, 1304.7317.

[102]  Robert S. Maier,et al.  Cosmic chronometers in the Rh = ct Universe , 2013, 1304.1802.

[103]  O. Civitarese,et al.  New cosmological constraints on the variation of fundamental constants: the fine structure constant and the Higgs vacuum expectation value , 2013 .

[104]  Yi-Peng Wu,et al.  Matter density perturbations in modified teleparallel theories , 2012, 1211.1778.

[105]  Yi-Peng Wu,et al.  Matter density perturbations in modified teleparallel theories , 2012, Journal of High Energy Physics.

[106]  D. Jain,et al.  Cosmic distance duality and cosmic transparency , 2012, 1210.2642.

[107]  Siqi Liu,et al.  Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven , 2012, 1207.4541.

[108]  R. Scaramella,et al.  Testing the distance duality relation with present and future data , 2012, 1205.1908.

[109]  V. Cardone,et al.  Accelerating f(T) Gravity Models Constrained by Recent Cosmological Data , 2012, 1204.5294.

[110]  C. Boehmer,et al.  Good and bad tetrads in f(T) gravity , 2012, 1204.4593.

[111]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[112]  L. Iorio,et al.  Solar system constraints on f(T) gravity , 2012, 1203.5781.

[113]  Baojiu Li,et al.  Unified description of screened modified gravity. , 2012, 1203.4812.

[114]  Michael T. Murphy,et al.  Spatial variation in the fine-structure constant – new results from VLT/UVES , 2012, 1202.4758.

[115]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[116]  B. Garilli,et al.  Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from the spectroscopic evolution of cosmic chronometers , 2012, 1201.3609.

[117]  R. Holanda,et al.  A test for cosmic distance duality , 2012, 1201.2378.

[118]  Sean Z. W. Lip,et al.  A Generalized Theory of Varying Alpha , 2011, 1110.3120.

[119]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[120]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[121]  L. Althaus,et al.  An upper limit to the secular variation of the gravitational constant from white dwarf stars , 2011, 1105.1992.

[122]  Shuo Cao,et al.  Testing the distance-duality relation with a combination of cosmological distance observations , 2011, 1104.4942.

[123]  R. Holanda,et al.  Probing the cosmic distance-duality relation with the Sunyaev-Zel'dovich effect, X-ray observations and supernovae Ia , 2011, 1104.3753.

[124]  F. Melia,et al.  Model-independent Test of the Cosmic Distance Duality Relation , 2011, Astrophysical Journal.

[125]  K. Liao,et al.  A consistent test of the distance-duality relation with galaxy clusters and Type Ia Supernovae , 2011, 1104.2497.

[126]  P. Molaro,et al.  First measurement of Mg isotope abundances at high redshifts and accurate estimate of Δα/α , 2011, 1102.2967.

[127]  Hongwei Yu,et al.  COSMOLOGICAL-MODEL-INDEPENDENT TESTS FOR THE DISTANCE–DUALITY RELATION FROM GALAXY CLUSTERS AND TYPE Ia SUPERNOVA , 2011, 1101.5255.

[128]  Chung-Chi Lee,et al.  Equation of state for dark energy in $f(T)$ gravity , 2010, 1011.0508.

[129]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[130]  J. Whitmore Variation in the Fine Structure Constant , 2010 .

[131]  C. Burrage,et al.  Anomalous coupling of scalars to gauge fields , 2010, 1010.4536.

[132]  Q. Huang,et al.  Growth factor in $f(T)$ gravity , 2010, 1010.3512.

[133]  Rongjia Yang Conformal transformation in f(T) theories , 2010, 1010.1376.

[134]  Jean-Philippe Uzan,et al.  Varying Constants, Gravitation and Cosmology , 2010, Living reviews in relativity.

[135]  Hongwei Yu,et al.  f(T) models with phantom divide line crossing , 2010, 1008.3669.

[136]  E. Saridakis,et al.  Cosmological perturbations in f(T) gravity , 2010, 1008.1250.

[137]  Hongwei Yu,et al.  Observational constraints on f(T) theory , 2010, 1006.0674.

[138]  R. Holanda,et al.  TESTING THE DISTANCE–DUALITY RELATION WITH GALAXY CLUSTERS AND TYPE Ia SUPERNOVAE , 2010, 1005.4458.

[139]  E. Linder Einstein's other gravity and the acceleration of the Universe , 2010, 1005.3039.

[140]  L. Verde,et al.  Constraints on cosmic opacity and beyond the standard model physics from cosmological distance measurements , 2010, 1004.2053.

[141]  R. Holanda,et al.  Cosmic Distance Duality Relation and the Shape of Galaxy Clusters , 2010, 1003.5906.

[142]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[143]  E. Elizalde,et al.  Conformal transformations in cosmology of modified gravity: the covariant approach perspective , 2009, 0907.3941.

[144]  L. Verde,et al.  Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements , 2009, 0907.3149.

[145]  E. Linder Exponential Gravity , 2009, 0905.2962.

[146]  U. Seljak,et al.  Cosmological Constraints on DGP Braneworld Gravity with Brane Tension , 2009, 0905.1112.

[147]  L. Verde,et al.  Consistency among distance measurements: transparency, BAO scale and accelerated expansion , 2009, 0902.2006.

[148]  G. Ellis Republication of: Relativistic cosmology , 2009 .

[149]  Franco Fiorini,et al.  Born-Infeld gravity in Weitzenböck spacetime , 2008, 0812.1981.

[150]  R. Ferraro,et al.  Dark torsion as the cosmic speed-up , 2008, 0812.1205.

[151]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[152]  R. Lazkoz,et al.  Comparison of standard ruler and standard candle constraints on dark energy models , 2007, 0712.1232.

[153]  I. M. H. Etherington Republication of: LX. On the definition of distance in general relativity , 2007 .

[154]  M. Kamionkowski Cluster Ellipticals as Cosmic Chronometers: Constraining the Equation of State of Dark Energy , 2007 .

[155]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[156]  James G. Williams,et al.  Williams et al. Reply (to the Comment by Dumin on"Progress in Lunar Laser Ranging Tests of Relativistic Gravity") , 2006, gr-qc/0612171.

[157]  Franco Fiorini,et al.  Modified teleparallel gravity : Inflation without an inflaton , 2006, gr-qc/0610067.

[158]  A. Melchiorri,et al.  CONSTRAINTS ON DARK ENERGY AND DISTANCE DUALITY FROM SUNYAEV–ZEL'DOVICH EFFECT AND CHANDRA X-RAY MEASUREMENTS , 2006, gr-qc/0606029.

[159]  E. Majerotto,et al.  Observational constraints on self-accelerating cosmology , 2006, astro-ph/0603353.

[160]  S. D. Odintsov,et al.  INTRODUCTION TO MODIFIED GRAVITY AND GRAVITATIONAL ALTERNATIVE FOR DARK ENERGY , 2006, hep-th/0601213.

[161]  John G. Barrow Varying constants , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[162]  M. Onegin,et al.  Natural nuclear reactor at Oklo and variation of fundamental constants: Computation of neutronics of a fresh core , 2005, hep-ph/0506186.

[163]  L. Verde,et al.  Constraints on the redshift dependence of the dark energy potential , 2004, astro-ph/0412269.

[164]  J. G. Pereira,et al.  Doing without the equivalence principle , 2004, gr-qc/0410042.

[165]  Seokcheon Lee,et al.  Quintessence models and the cosmological evolution of α , 2004, astro-ph/0406039.

[166]  Y. Mellier,et al.  The distance duality relation from X-ray and SZ observations of clusters , 2004, astro-ph/0405620.

[167]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[168]  T. Schneider,et al.  Limit on the present temporal variation of the fine structure constant. , 2004, Physical review letters.

[169]  M. Kunz,et al.  Cosmic distance-duality as a probe of exotic physics and acceleration , 2003, astro-ph/0312443.

[170]  J. Prochaska,et al.  Constraining variations in the fine-structure constant, quark masses and the strong interaction , 2003, astro-ph/0310318.

[171]  G. Manhès,et al.  Reexamination of the 187 Re bound on the variation of fundamental couplings , 2003, astro-ph/0309252.

[172]  N. Nunes,et al.  Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha , 2003, hep-ph/0307299.

[173]  J. Magueijo New varying speed of light theories , 2003, astro-ph/0305457.

[174]  C. Wetterich Crossover quintessence and cosmological history of fundamental “constants” , 2003 .

[175]  J. G. Pereira,et al.  Gravitation Without the Equivalence Principle , 2003, gr-qc/0304106.

[176]  D. Schlegel,et al.  Does the Fine-Structure Constant Vary with Cosmological Epoch? , 2003, astro-ph/0301507.

[177]  J. Barrow,et al.  Qualitative analysis of universes with varying alpha , 2002, gr-qc/0207012.

[178]  J. Uzan The fundamental constants and their variation: observational and theoretical status , 2002, hep-ph/0205340.

[179]  T. Damour,et al.  Violations of the equivalence principle in a dilaton-runaway scenario , 2002, hep-th/0205111.

[180]  T. Damour,et al.  Runaway dilaton and equivalence principle violations. , 2002, Physical review letters.

[181]  J. Barrow,et al.  Is it e or is it c? Experimental tests of varying alpha , 2002, astro-ph/0202374.

[182]  H. Sandvik,et al.  Variations of alpha in space and time , 2002, astro-ph/0202129.

[183]  K. Olive,et al.  Evolution of the fine structure constant driven by dark matter and the cosmological constant , 2001, hep-ph/0110377.

[184]  J. Flowers,et al.  Progress in our knowledge of the fundamental constants of physics , 2001 .

[185]  H. Sandvik,et al.  Behavior of varying-alpha cosmologies , 2001, astro-ph/0109414.

[186]  J. Moffat A Model of Varying Fine Structure Constant and Varying Speed of Light , 2001, astro-ph/0109350.

[187]  H. Sandvik,et al.  A simple cosmology with a varying fine structure constant. , 2001, Physical review letters.

[188]  A. Loeb,et al.  Constraining Cosmological Parameters Based on Relative Galaxy Ages , 2001, astro-ph/0106145.

[189]  C. Deffayet Cosmology on a Brane in Minkowski Bulk , 2000, hep-th/0010186.

[190]  M. Porrati,et al.  4D Gravity on a Brane in 5D Minkowski Space , 2000, hep-th/0005016.

[191]  E. Kiritsis Supergravity, D-brane probes and thermal super Yang-Mills: a comparison , 1999, hep-th/9906206.

[192]  J. Moffat,et al.  Dynamical mechanism for varying light velocity as a solution to cosmological problems , 1998, astro-ph/9812481.

[193]  Joao Magueijo,et al.  A Time varying speed of light as a solution to cosmological puzzles , 1998, astro-ph/9811018.

[194]  J. Barrow Cosmologies with varying light speed , 1998, astro-ph/9811022.

[195]  M. Livio,et al.  Does the Fine-Structure Constant Really Vary in Time? , 1998, astro-ph/9808291.

[196]  F. Dyson,et al.  The Oklo bound on the time variation of the fine-structure constant revisited , 1996, hep-ph/9606486.

[197]  R. Tjoelker,et al.  Atomic clocks and variations of the fine structure constant. , 1995, Physical review letters.

[198]  A. Polyakov,et al.  String theory and gravity , 1994, gr-qc/9411069.

[199]  A. Polyakov,et al.  The string dilation and a least coupling principle , 1994, hep-th/9401069.

[200]  P. Peebles Principles of Physical Cosmology , 1993 .

[201]  J. Moffat SUPERLUMINARY UNIVERSE: A POSSIBLE SOLUTION TO THE INITIAL VALUE PROBLEM IN COSMOLOGY , 1992, gr-qc/9211020.

[202]  K. Maeda,et al.  Towards the Einstein-Hilbert action via conformal transformation. , 1989, Physical review. D, Particles and fields.

[203]  Barrow Observational limits on the time evolution of extra spatial dimensions. , 1987, Physical review. D, Particles and fields.

[204]  Zi Wang,et al.  Time variation of Newton's gravitational constant in superstring theories. , 1986 .

[205]  Jacob D. Bekenstein,et al.  Fine Structure Constant: Is It Really a Constant? , 1982 .

[206]  S. Detweiler,et al.  Where has the fifth dimension gone , 1980 .

[207]  J. Wess SUPERGRAVITY , 1980 .

[208]  K. Hayashi,et al.  New General Relativity , 1979 .

[209]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[210]  H. Akaike A new look at the statistical model identification , 1974 .

[211]  D. Lovelock The Einstein Tensor and Its Generalizations , 1971 .

[212]  R. Dicke,et al.  Mach's principle and a relativistic theory of gravitation , 1961 .

[213]  Paul Adrien Maurice Dirac,et al.  A new basis for cosmology , 1938, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[214]  P. Jordan,et al.  Die physikalischen Weltkonstanten , 1937, Naturwissenschaften.

[215]  P. Dirac The Cosmological Constants , 1937, Nature.

[216]  I. M. H. Etherington LX. On the definition of distance in general relativity , 1933 .

[217]  R. Abbott,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2019 .

[218]  P. Petitjean,et al.  Bounds on a change in alpha towards quasar HE 2217-2818 , 2014 .

[219]  Tomas Ortin Gravity and Strings: The extended objects of string theory , 2004 .

[220]  M. Porrati,et al.  D Gravity on a Brane in 5 D Minkowski Space , 2000 .

[221]  A. Raftery,et al.  Bayes factors , 1995 .

[222]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .

[223]  M. Fierz On the physical interpretation of P.Jordan's extended theory of gravitation , 1956 .