Superluminal photonic tunneling and quantum electronics

Abstract Recent experimental studies with microwave and laser pulses have revealed superluminal (faster-than-light) group, signal and energy velocities for the tunneling of electromagnetic wave packets in undersized waveguides and other photonic barriers. First we report on the historic background of tunneling and the problems of the interpretation of electronic tunneling data. The mathematical analogy of the classical tunneling, i.e. the propagation of evanescent modes, described by the Helmholtz equation, and the quantum mechanical tunneling, described by the Schro¨dinger equation, is introduced. In the next sections the experimental data on the tunneling time of electromagnetic wave packets and signals is presented. The interpretation of the experimental observations, particularly the production of superluminal tunneling velocity and its implication for the quantum mechanical electronic tunneling are discussed in the following sections. An introduction to the various theoretical approaches is included. Remarks on superluminal tunneling and on causality conclude the paper.

[1]  Michel Piché,et al.  Photonic bandgaps in periodic dielectric structures , 1993 .

[2]  G. Diener,et al.  Superluminal group velocities and information transfer , 1996 .

[3]  Complex-barrier tunnelling times , 1994, quant-ph/0203091.

[4]  J. G. Muga,et al.  Transmission and reflection tunneling times , 1992 .

[5]  The Bohm approach to cavity quantum scalar field dynamics. Part I: The free field , 1994 .

[6]  M. Scully,et al.  The Wigner phase-space description of collision processes , 1983 .

[7]  R. Landauer Light faster than light? , 1993, Nature.

[8]  G. P. Pazzi,et al.  Anomalous pulse delay in microwave propagation: A plausible connection to the tunneling time. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Ruggeri,et al.  Semiclassical analysis of traversal time through Kac's solution of the telegrapher's equation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Nimtz,et al.  Evanescent-mode propagation and quantum tunneling. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Connor,et al.  Path-integral analysis of the time delay for wave-packet scattering and the status of complex tunneling times. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[12]  A. Papoulis,et al.  The Fourier Integral and Its Applications , 1963 .

[13]  Leavens Cr,et al.  Larmor-clock transmission times for resonant double barriers. , 1989 .

[14]  E. H. Hauge,et al.  Tunneling times: a critical review , 1989 .

[15]  L. Esaki Discovery of the tunnel diode , 1976, IEEE Transactions on Electron Devices.

[16]  I. Giaever,et al.  Energy gap in superconductors measured by electron tunneling. [Al-AlO-Pb] , 1960 .

[17]  Mártin,et al.  Time delay of evanescent electromagnetic waves and the analogy to particle tunneling. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[18]  H. Brodowsky,et al.  Comparison of experimental microwave tunneling data with calculations based on Maxwell's equations , 1996 .

[19]  R. Landauer,et al.  Time delay in wave packet tunneling , 1992 .

[20]  L. Brillouin,et al.  Wave Propagation in Periodic Structures , 1946 .

[21]  Baskin,et al.  Traversal time in quantum scattering. , 1987, Physical review. A, General physics.

[22]  Ruiz,et al.  Faraday rotation and complex-valued traversal time for classical light waves. , 1995, Physical review letters.

[23]  H. Brodowsky,et al.  Tunneling with dissipation , 1994 .

[24]  E. Recami,et al.  Recent developments in the time analysis of tunneling processes , 1992 .

[25]  Steven Chu,et al.  Linear Pulse Propagation in an Absorbing Medium , 1982 .

[26]  E. Recami Classical tachyons and possible applications , 1986 .

[27]  Daniela Mugnai,et al.  Delay‐time measurements in narrowed waveguides as a test of tunneling , 1991 .

[28]  M. Hagmann Transit time for quantum tunneling , 1992 .

[29]  P. Holland The de Broglie-Bohm theory of motion and quantum field theory , 1993 .

[30]  E. Wigner,et al.  Quantum Limitations of the Measurement of Space-Time Distances , 1958 .

[31]  Günter Nimtz,et al.  Zero-time tunneling of evanescent mode packets , 1993 .

[32]  Subfemtosecond determination of transmission delay times for a dielectric mirror (photonic band gap) as a function of the angle of incidence. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[33]  Sala,et al.  Systematic approach to define and classify quantum transmission and reflection times. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[34]  Eli Yablonovitch,et al.  Photonic band-gap crystals , 1993 .

[35]  Sakaki,et al.  Tunneling escape rate of electrons from quantum well in double-barrier heterostructures. , 1987, Physical review letters.

[36]  C. Garrett,et al.  Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium , 1970 .

[37]  R. Landauer Barrier traversal time , 1989, Nature.

[38]  Connor,et al.  Negative probability and the distributions of dwell, transmission, and reflection times for quantum tunneling. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[39]  G. Nimtz,et al.  On causality proofs of superluminal barrier traversal of frequency band limited wave packets , 1994 .

[40]  W. Mckinnon,et al.  An exact determination of the mean dwell time based on the quantum clock of Salecker and Wigner , 1994 .

[41]  Nicholas Chako,et al.  Wave propagation and group velocity , 1960 .

[42]  Traversal Time for Tunneling , 1982 .

[43]  A. Enders,et al.  Photonic tunneling times , 1994 .

[44]  Rolf Landauer,et al.  Barrier interaction time in tunneling , 1994 .

[45]  L. Mandel,et al.  Phase-Shift Measurement of Evanescent Electromagnetic Waves* , 1971 .

[46]  Günter Nimtz,et al.  On superluminal barrier traversal , 1992 .

[47]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[48]  T. E. Hartman,et al.  Tunneling of a Wave Packet , 1962 .

[49]  R. Szipőcs,et al.  Tunneling of optical pulses through photonic band gaps. , 1994, Physical review letters.

[50]  M. Buttiker Larmor precession and the traversal time for tunneling , 1983 .

[51]  Peter Pleshko,et al.  Experimental Observation of Sommerfeld and Brillouin Precursors in the Microwave Domain , 1969 .

[52]  Nimtz,et al.  Photonic-tunneling experiments. , 1993, Physical review. B, Condensed matter.

[53]  Aephraim M. Steinberg,et al.  Measurement of the single-photon tunneling time. , 1993, Physical review letters.

[54]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[55]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[56]  Kehr,et al.  Larmor clock for tunneling times. , 1996, Physical review. A, Atomic, molecular, and optical physics.