Quantitative Architectural Analysis: A New Approach to Cortical Mapping

Results from functional imaging studies are often still interpreted using the classical architectonic brain maps of Brodmann and his successors. One obvious weakness in traditional, architectural mapping is the subjective nature of localizing borders between cortical areas by means of a purely visual, microscopical examination of histological specimens. To overcome this limitation, objective mapping procedures based on quantitative cytoarchitecture have been generated. As a result, new maps for various species including man were established. In our contribution, principles of quantitative cytoarchitecture and algorithm-based cortical mapping are described for a cytoarchitectural parcellation of the human auditory cortex. Defining cortical borders based on quantified changes in cortical lamination is the decisive step towards a novel, highly improved probabilistic brain atlas.

[1]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[2]  H. Haug,et al.  Remarks on the determination and significance of the gray cell coefficient , 1956 .

[3]  A. Hopf Photometric studies on the myeloarchitecture of the human temporal lobe. , 1968, Journal fur Hirnforschung.

[4]  A. Hopf,et al.  Registration of the myeloarchitecture of the human frontal lobe with an extinction method. , 1968, Journal fur Hirnforschung.

[5]  H. Adhami Die photometrische Bestimmung des Cortexzell- und Graugehalts auf der Grundlage des Nissl-Bildes , 1973 .

[6]  H. Adhami I. Allgemeiner Teil , 1973 .

[7]  A J Hudspeth,et al.  Cytoarchitectonic mapping by microdensitometry. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[8]  V. Mountcastle,et al.  An organizing principle for cerebral function : the unit module and the distributed system , 1978 .

[9]  G. Edelman,et al.  The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function , 1978 .

[10]  P H Bartels Numerical evaluation of cytologic data: II. Comparison of profiles. , 1979, Analytical and quantitative cytology.

[11]  H Haug,et al.  The significance of quantitative stereologic experimental procedures in pathology. , 1980, Pathology, research and practice.

[12]  E. Weibel Stereological methods in cell biology: where are we--where are we going? , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[13]  On the proper use of point-counting and semi-automatic procedures in stereology. , 1981, Microscopica acta.

[14]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[15]  Karl Zilles,et al.  Estimation of volume fractions in nervous tissue with an image analyzer , 1982, Journal of Neuroscience Methods.

[16]  H. Kretschmann,et al.  Different volume changes of cerebral cortex and white matter during histological preparation. , 1982, Microscopica acta.

[17]  A. Schleicher,et al.  Quantitative Cytoarchitectonics of the Cerebral Cortices of Several Prosimian Species , 1982 .

[18]  B Sauer,et al.  Semi‐automatic analysis of microscopic images of the human cerebral cortex using the grey level index , 1983, Journal of microscopy.

[19]  B. Sauer Lamina boundaries of the human striate area compared with automatically-obtained grey level index profiles. , 1983, Journal fur Hirnforschung.

[20]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.

[21]  Jeffrey H. Kulick,et al.  Video and scanning microdensitometer-based imaging systems in autoradiographic densitometry , 1984, Journal of Neuroscience Methods.

[22]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[23]  John C. Gower,et al.  Measures of Similarity, Dissimilarity and Distance , 1985 .

[24]  A. Schleicher,et al.  Comparative aspects of the primate posterior cingulate cortex , 1986, The Journal of comparative neurology.

[25]  Karl Zilles,et al.  A quantitative approach to cytoarchitectonics: software and hardware aspects of a system for the evaluation and analysis of structural inhomogeneities in nervous tissue , 1986, Journal of Neuroscience Methods.

[26]  W. P. Dixon,et al.  BMPD statistical software manual , 1988 .

[27]  Pasko Rakic,et al.  Differential quenching and limits of resolution in autoradiograms of brain tissue labeled with3H-,125I- and14C-compounds , 1988, Brain Research.

[28]  H. J. G. Gundersen,et al.  The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[29]  H. J. G. GUNDERSEN,et al.  Some new, simple and efficient stereological methods and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[30]  A. Schleicher,et al.  Gyrification in the cerebral cortex of primates. , 1989, Brain, behavior and evolution.

[31]  K Zilles,et al.  A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser , 1990, Journal of microscopy.

[32]  G. Rizzolatti,et al.  Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey , 1991, The Journal of comparative neurology.

[33]  J. Bortz Statistik: Fur Sozialwissenschaftler , 1993 .

[34]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[35]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[36]  A. Schleicher,et al.  Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. , 1995, Journal of anatomy.

[37]  A. Schleicher,et al.  Asymmetry in the Human Motor Cortex and Handedness , 1996, NeuroImage.

[38]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[39]  Y. Maurin,et al.  Computer assisted three-dimensional reconstruction of brain regions from serial section digitized images. Application to the organization of striato-nigral relationships in the rat , 1996, Journal of Neuroscience Methods.

[40]  Karl Zilles,et al.  Postnatal development of interhemispheric asymmetry in the cytoarchitecture of human area 4 , 1997, Anatomy and Embryology.

[41]  65-24 Neuropathological postmortem Investigation of anterior cinguiate cortex in schizophrenia , 1997, Biological Psychiatry.

[42]  65-23 Neuropathological postmortem Investigation of prefrontal cortex in schizophrenia , 1997, Biological Psychiatry.

[43]  Persistence of layer IV in the primary motor cortex (area 4) of children with cerebral palsy. , 1997, Journal fur Hirnforschung.

[44]  V. Howard,et al.  Unbiased Stereology: Three-Dimensional Measurement in Microscopy , 1998 .

[45]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[46]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[47]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[48]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[49]  I. Aharon,et al.  Three‐dimensional mapping of cortical thickness using Laplace's Equation , 2000, Human brain mapping.

[50]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[51]  A. Schleicher,et al.  Automated image analysis of disturbed cytoarchitecture in Brodmann area 10 in schizophrenia: A post-mortem study , 2000, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[52]  K Amunts,et al.  A stereological approach to human cortical architecture: identification and delineation of cortical areas , 2000, Journal of Chemical Neuroanatomy.

[53]  Andrew E. Switala,et al.  Quantitative analysis of cell columns in the cerebral cortex , 2000, Journal of Neuroscience Methods.

[54]  R. Burwell Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat , 2001, The Journal of comparative neurology.

[55]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[56]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[57]  K. Zilles,et al.  Cyto-, Myelo-, and Receptor Architectonics of the Human Parietal Cortex , 2001, NeuroImage.

[58]  K. Amunts,et al.  Advances in cytoarchitectonic mapping of the human cerebral cortex. , 2001, Neuroimaging clinics of North America.

[59]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[60]  N. H. Timm Applied Multivariate Analysis , 2002 .

[61]  Wolfgang Knabe,et al.  High resolution scanning and three-dimensional reconstruction of cellular events in large objects during brain development , 2002, Journal of Neuroscience Methods.

[62]  O. Schmitt,et al.  A Robust Transcortical Profile Scanner for Generating 2-D Traverses in Histological Sections of Richly Curved Cortical Courses , 2002, NeuroImage.

[63]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[64]  Katrin Amunts,et al.  3 Architectonic Mapping of the Human Cerebral Cortex , 2002 .

[65]  A. Schleicher,et al.  Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry , 2002, European Neuropsychopharmacology.

[66]  Andrew E. Switala,et al.  Neuronal Density and Architecture (Gray Level Index) in the Brains of Autistic Patients , 2002, Journal of child neurology.

[67]  D. Buxhoeveden,et al.  The Minicolumn and Evolution of the Brain , 2002, Brain, Behavior and Evolution.

[68]  Simon B. Eickhoff,et al.  Cytoarchitectonic analysis and stereotaxic map of the human secondary somatosensory cortex region , 2002 .

[69]  P. Hof,et al.  Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. , 2002, AJNR. American journal of neuroradiology.

[70]  Frithjof Kruggel,et al.  Analyzing the Neocortical Fine-Structure , 2001, IPMI.

[71]  M. Jenkinson,et al.  In vivo identification of human cortical areas using high-resolution MRI: An approach to cerebral structure–function correlation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Karl Zilles,et al.  The human parietal cortex: a novel approach to its architectonic mapping. , 2003, Advances in neurology.

[73]  Oliver Schmitt,et al.  Detection of cortical transition regions utilizing statistical analyses of excess masses , 2003, NeuroImage.

[74]  Lewis D. Griffin,et al.  Zen and the art of medical image registration: correspondence, homology, and quality , 2003, NeuroImage.

[75]  Kai Vogeley,et al.  Automated image analysis of disturbed cytoarchitecture in Brodmann area 10 in schizophrenia , 2003, Schizophrenia Research.

[76]  Patrick R Hof,et al.  Variability of Broca's area homologue in African great apes: implications for language evolution. , 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[77]  A. Schleicher,et al.  A quantitative approach to cytoarchitectonics , 1978, Anatomy and Embryology.

[78]  Ricardo Insausti,et al.  Quantitative estimation of the primary auditory cortex in human brains , 2004, Brain Research.

[79]  Karl Zilles,et al.  Cortical Orofacial Motor Representation in Old World Monkeys, Great Apes, and Humans , 2004, Brain, Behavior and Evolution.

[80]  A. Schleicher,et al.  A quantitative approach to cytoarchitectonics , 2004, Anatomy and Embryology.

[81]  A. W. Toga,et al.  A myelo-architectonic method for the structural classification of cortical areas , 2004, NeuroImage.

[82]  L. Hömke,et al.  Analysis of nerve fibers and their distribution in histologic sections of the human brain , 2004, Microscopy research and technique.

[83]  Simon B. Eickhoff,et al.  Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 , 2004, NeuroImage.

[84]  P. B. Cipolloni,et al.  Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey , 2004, The Journal of comparative neurology.

[85]  A. Schleicher,et al.  A quantitative approach to cytoarchitectonics , 2004, Anatomy and Embryology.

[86]  A. Schleicher,et al.  High‐resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex , 2005, Human brain mapping.

[87]  K. Amunts,et al.  Multimodal architectonic mapping of human superior temporal gyrus , 2005, Anatomy and Embryology.

[88]  S. B. Eickhoff,et al.  Quantitative architectural analysis: a new approach to cortical mapping , 2005, Anatomy and Embryology.

[89]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[90]  G. Orban,et al.  Observing Others: Multiple Action Representation in the Frontal Lobe , 2005, Science.

[91]  K. Amunts,et al.  Human V5/MT+: comparison of functional and cytoarchitectonic data , 2005, Anatomy and Embryology.

[92]  Katrin Amunts,et al.  Atlases of the Human Brain: Tools for Functional Neuroimaging , 2006 .

[93]  H. Engeland,et al.  Minicolumnar abnormalities in autism , 2006, Acta Neuropathologica.

[94]  A. Schleicher,et al.  The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. , 2006, Cerebral cortex.

[95]  Alain Pitiot,et al.  Piecewise affine registration of biological images for volume reconstruction , 2006, Medical Image Anal..

[96]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[97]  K. Amunts,et al.  Towards multimodal atlases of the human brain , 2006, Nature Reviews Neuroscience.

[98]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[99]  Katrin Amunts,et al.  Cytoarchitecture of the cerebral cortex—More than localization , 2007, NeuroImage.

[100]  Katrin Amunts,et al.  Observer‐independent analysis of high‐resolution MR images of the human cerebral cortex: In vivo delineation of cortical areas , 2007, Human brain mapping.

[101]  J. Lübke,et al.  Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex , 2007, Brain Structure and Function.

[102]  Andrew Switala,et al.  A temporal continuity to the vertical organization of the human neocortex. , 2006, Cerebral cortex.

[103]  Karl Zilles,et al.  Cytology and receptor architecture of human anterior cingulate cortex , 2008, The Journal of comparative neurology.