Applying algorithm selection to abductive diagnostic reasoning

The complexity of technical systems requires increasingly advanced fault diagnosis methods to ensure safety and reliability during operation. Particularly in domains where maintenance constitutes an extensive portion of the entire operation cost, efficient and effective failure identification holds the potential to provide large economic value. Abduction offers an intuitive concept for diagnostic reasoning relying on the notion of logical entailment. Nevertheless, abductive reasoning is an intractable problem and computing solutions for instances of reasonable size and complexity persists to pose a challenge. In this paper, we investigate algorithm selection as a mechanism to predict the “best” performing technique for a specific abduction scenario within the framework of model-based diagnosis. Based on a set of structural attributes extracted from the system models, our meta-approach trains a machine learning classifier that forecasts the most runtime efficient abduction technique given a new diagnosis problem. To assess the predictor’s selection capabilities and the suitability of the meta-approach in general, we conducted an empirical analysis featuring seven abductive reasoning approaches. The results obtained indicate that applying algorithm selection is competitive in comparison to always choosing a single abductive reasoning method.

[1]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[2]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[3]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[4]  Russell Greiner,et al.  A Correction to the Algorithm in Reiter's Theory of Diagnosis , 1989, Artif. Intell..

[5]  Katsumi Inoue,et al.  Linear Resolution for Consequence Finding , 1992, Artif. Intell..

[6]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[7]  Karem A. Sakallah,et al.  Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints , 2007, Journal of Automated Reasoning.

[8]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[9]  Joao Marques-Silva,et al.  Propositional Abduction with Implicit Hitting Sets , 2016, ECAI.

[10]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[11]  Franz Wotawa,et al.  On Structural Properties to Improve FMEA-Based Abductive Diagnosis , 2016, KnowProS@IJCAI.

[12]  Sheila A. McIlraith Logic-Based Abductive Inference , 1998 .

[13]  Stefan Rümmele,et al.  Evaluating Tree-Decomposition Based Algorithms for Answer Set Programming , 2012, LION.

[14]  F. Wotawa,et al.  Integration of Failure Assessments into the Diagnostic Process , 2016 .

[15]  Katsumi Inoue,et al.  SOLAR: An automated deduction system for consequence finding , 2010, AI Commun..

[16]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..

[17]  Andrew S. Gordon,et al.  Commonsense Interpretation of Triangle Behavior , 2016, AAAI.

[18]  Michel Minoux,et al.  LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn Formulae and Computer Implementation , 1988, Inf. Process. Lett..

[19]  Pierre Marquis,et al.  Consequence Finding Algorithms , 2000 .

[20]  Bernd Bischl,et al.  ASlib: A benchmark library for algorithm selection , 2015, Artif. Intell..

[21]  Matti Järvisalo,et al.  Implicit Hitting Set Algorithms for Reasoning Beyond NP , 2016, KR.

[22]  Franz Wotawa,et al.  Improving Abductive Diagnosis Through Structural Features: A Meta-Approach , 2016, DARe@ECAI.

[23]  Harry Zhang,et al.  Switching among Non-Weighting, Clause Weighting, and Variable Weighting in Local Search for SAT , 2008, CP.

[24]  Joao Marques-Silva,et al.  Efficient MUS Enumeration of Horn Formulae with Applications to Axiom Pinpointing , 2015, SAT.

[25]  Bert Van Nuffelen,et al.  A-System: Problem Solving through Abduction , 2001, IJCAI.

[26]  Hector J. Levesque,et al.  A Knowledge-Level Account of Abduction , 1989, IJCAI.

[27]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[28]  Yoav Shoham,et al.  A portfolio approach to algorithm select , 2003, IJCAI 2003.

[29]  J. Reggia,et al.  Abductive Inference Models for Diagnostic Problem-Solving , 1990, Symbolic Computation.

[30]  Jürg Kohlas,et al.  Model-Based Diagnostics and Probabilistic Assumption-Based Reasoning , 1998, Artif. Intell..

[31]  Peter Schüller Modeling Variations of First-Order Horn Abduction in Answer Set Programming , 2016, Fundam. Informaticae.

[32]  D. J. Woollons,et al.  Failure modes and effects analysis of complex engineering systems using functional models , 1998, Artif. Intell. Eng..

[33]  John R. Rice,et al.  The Algorithm Selection Problem , 1976, Adv. Comput..

[34]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[35]  Matthias Dehmer,et al.  Entropy and the Complexity of Graphs Revisited , 2012, Entropy.

[36]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms: An Initial Investigation ∗ , 2006 .

[37]  Franz Wotawa,et al.  Failure Mode and Effect Analysis for Abductive Diagnosis , 2014, DARe@ECAI.

[38]  Georg Gottlob,et al.  The Complexity of Logic-Based Abduction , 1993, STACS.

[39]  Kate Smith-Miles,et al.  Cross-disciplinary perspectives on meta-learning for algorithm selection , 2009, CSUR.

[40]  Kevin Leyton-Brown,et al.  Algorithm runtime prediction: Methods & evaluation , 2012, Artif. Intell..

[41]  Franz Wotawa,et al.  Exploiting Structural Metrics in FMEA-Based Abductive Diagnosis. , 2016 .

[42]  Sheila A. McIlraith Generating Tests Using Abduction , 1994, KR.

[43]  Luca Console,et al.  Model-based Diagnosis in the Real World: Lessons Learned and Challenges Remaining , 1999, IJCAI.

[44]  Martin Gebser,et al.  Clingo = ASP + Control: Preliminary Report , 2014, ArXiv.

[45]  Johan de Kleer,et al.  Problem Solving with the ATMS , 1986, Artif. Intell..

[46]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.

[47]  J. Dekleer An assumption-based TMS , 1986 .

[48]  Georg Gottlob,et al.  Hypothesis Classification, Abductive Diagnosis and Therapy , 1990, Expert Systems in Engineering.

[49]  Barry O'Sullivan,et al.  A Portfolio Approach to Enumerating Minimal Correction Subsets for Satisfiability Problems , 2014, CPAIOR.

[50]  Lars Kotthoff,et al.  Algorithm Selection for Combinatorial Search Problems: A Survey , 2012, AI Mag..

[51]  Ulrich Junker,et al.  QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained Problems , 2004, AAAI.

[52]  Pietro Torasso,et al.  A spectrum of logical definitions of model‐based diagnosis 1 , 1991, Comput. Intell..

[53]  Franz Wotawa,et al.  Faster horn diagnosis - a performance comparison of abductive reasoning algorithms , 2020, Applied Intelligence.

[54]  Dean Allemang,et al.  The Computational Complexity of Abduction , 1991, Artif. Intell..

[55]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[56]  Paolo Mancarella,et al.  Abductive Logic Programming , 1992, LPNMR.

[57]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[58]  Franz Wotawa,et al.  Finding Explanations: an Empirical Evaluation of Abductive Diagnosis Algorithms , 2015, DARe@IJCAI.

[59]  Gustav Nordh,et al.  What makes propositional abduction tractable , 2008, Artif. Intell..

[60]  William H. Hsu,et al.  A machine learning approach to algorithm selection for $\mathcal{NP}$ -hard optimization problems: a case study on the MPE problem , 2007, Ann. Oper. Res..

[61]  Jerry R. Hobbs,et al.  Abductive Reasoning with a Large Knowledge Base for Discourse Processing , 2011, IWCS.

[62]  Nysret Musliu,et al.  Algorithm Selection for the Graph Coloring Problem , 2013, LION.

[63]  Kevin Leyton-Brown,et al.  Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection , 2010, AAAI.

[64]  Armando Tacchella,et al.  Theory and Applications of Satisfiability Testing , 2003, Lecture Notes in Computer Science.

[65]  Peter J. F. Lucas Bayesian model-based diagnosis , 2001, Int. J. Approx. Reason..

[66]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..