Level-by-level artificial viscosity and visualization for MHD simulation with adaptive mesh refinement

We propose a numerical method to determine the artificial viscosity in magnetohydrodynamics (MHD) simulations with adaptive mesh refinement (AMR) method, where the artificial viscosity is adaptively changed due to the resolution level of the AMR hierarchy. Although the suitable value of the artificial viscosity depends on the governing equations and the model of target problem, it can be determined by von Neumann stability analysis. By means of the new method, "level-by-level artificial viscosity method," MHD simulations of Rayleigh-Taylor instability (RTI) are carried out with the AMR method. The validity of the level-by-level artificial viscosity method is confirmed by the comparison of the linear growth rates of RTI between the AMR simulations and the simple simulations with uniform grid and uniform artificial viscosity whose resolution is the same as that in the highest level of the AMR simulation. Moreover, in the nonlinear phase of RTI, the secondary instability is clearly observed where the hierarchical data structure of AMR calculation is visualized as high resolution region floats up like terraced fields. In the applications of the method to general fluid simulations, the growth of small structures can be sufficiently reproduced, while the divergence of numerical solutions can be suppressed.

[1]  Hal Finkel,et al.  GRChombo: Numerical relativity with adaptive mesh refinement , 2015, 1503.03436.

[2]  Liping Yang,et al.  SIP-CESE MHD model of solar wind with adaptive mesh refinement of hexahedral meshes , 2014, Comput. Phys. Commun..

[3]  Alejandro L. Garcia,et al.  Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo , 1999 .

[4]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[5]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[6]  Tomoaki Matsumoto Self-Gravitational Magnetohydrodynamics with Adaptive Mesh Refinement for Protostellar Collapse , 2006 .

[7]  R. Teyssier,et al.  Protostellar collapse: radiative and magnetic feedbacks on small-scale fragmentation , 2009, Astronomy and Astrophysics.

[8]  A. M. Khokhlov,et al.  Fully Threaded Tree for Adaptive Refinement Fluid Dynamics Simulations , 1998 .

[9]  R. Teyssier,et al.  Radiative, magnetic and numerical feedbacks on small-scale fragmentation , 2010, Proceedings of the International Astronomical Union.

[10]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[11]  Fabio Riva,et al.  Numerical approach to the parallel gradient operator in tokamak scrape-off layer turbulence simulations and application to the GBS code , 2015, Comput. Phys. Commun..

[12]  W. Ip,et al.  Origin of Mercury’s double magnetopause: 3D hybrid simulation study with A.I.K.E.F. , 2012 .

[13]  H. Miura,et al.  Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects , 2015 .

[14]  Quentin F. Stout,et al.  An adaptive MHD method for global space weather simulations , 2000 .

[15]  Peter MacNeice,et al.  Paramesh: A Parallel Adaptive Mesh Refinement Community Toolkit , 2013 .

[16]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[17]  Dinshaw Balsara,et al.  Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.

[18]  Yaxun Liu,et al.  Fast time-domain simulation of optical waveguide structures with a multilevel dynamically adaptive mesh refinement FDTD approach , 2006, Journal of Lightwave Technology.

[19]  MHD simulations of jet acceleration from Keplerian accretion disks - The effects of disk resistivity , 2007, astro-ph/0703064.

[20]  Eric Blayo,et al.  Adaptive Mesh Refinement for Finite-Difference Ocean Models: First Experiments , 1999 .

[21]  John Shalf,et al.  The Cactus Framework and Toolkit: Design and Applications , 2002, VECPAR.

[22]  Masaharu Matsumoto,et al.  Development of a Computational Framework for Block-based AMR Simulations , 2014, ICCS.

[23]  R. Pudritz,et al.  Simulating hydromagnetic processes in star formation: introducing ambipolar diffusion into an adaptive mesh refinement code , 2008, 0810.0299.

[24]  X. Feng,et al.  Modeling the interaction between the solar wind and Saturn's magnetosphere by the AMR‐CESE‐MHD method , 2014 .

[25]  Dinshaw S. Balsara,et al.  Highly parallel structured adaptive mesh refinement using parallel language-based approaches , 2001, Parallel Comput..

[26]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[27]  P. Hennebelle,et al.  Disk formation during collapse of magnetized protostellar cores , 2009, 0909.3190.

[28]  Richard I. Klein,et al.  Self-gravitational Hydrodynamics with Three-dimensional Adaptive Mesh Refinement: Methodology and Applications to Molecular Cloud Collapse and Fragmentation , 1998 .

[29]  P. Colella,et al.  THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS , 2011, 1110.0740.

[30]  Tom Abel,et al.  The Formation and Fragmentation of Primordial Molecular Clouds , 1999 .

[31]  Integrated self-consistent analysis of NSTX performance during normal operation and disruptions , 2013 .

[32]  David Neilsen,et al.  Relativistic MHD with adaptive mesh refinement , 2006, gr-qc/0605102.

[33]  A. Frank,et al.  SIMULATING MAGNETOHYDRODYNAMICAL FLOW WITH CONSTRAINED TRANSPORT AND ADAPTIVE MESH REFINEMENT: ALGORITHMS AND TESTS OF THE AstroBEAR CODE , 2007, 0710.0424.

[34]  K. Germaschewski,et al.  Three-dimensional MHD high-resolution computations with CWENO employing adaptive mesh refinement , 2004 .

[35]  Christiane Jablonowski,et al.  Block-structured adaptive meshes and reduced grids for atmospheric general circulation models , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  K. Powell,et al.  Magnetospheric configuration for Parker-spiral IMF conditions: Results of a 3D AMR MHD simulation , 2000 .

[37]  Dinshaw S. Balsara Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics , 2009, J. Comput. Phys..

[38]  R. Teyssier,et al.  A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics , 2006 .

[39]  S. Zaleski,et al.  Numerical simulation of droplets, bubbles and waves: state of the art , 2009 .

[40]  Edward Santilli,et al.  The Stratified Ocean Model with Adaptive Refinement (SOMAR) , 2015, J. Comput. Phys..

[41]  Phillip Colella,et al.  Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems , 2007, J. Comput. Phys..

[42]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[43]  C. Fang,et al.  A new MHD code with adaptive mesh refinement and parallelization for astrophysics , 2012, Comput. Phys. Commun..

[44]  Z. Etienne,et al.  Relativistic magnetohydrodynamics in dynamical spacetimes: A new adaptive mesh refinement implementation , 2010, 1007.2848.

[45]  G. Bryan,et al.  Cosmological Adaptive Mesh Refinement , 1998, astro-ph/9807121.

[46]  Devin W. Silvia,et al.  ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, J. Open Source Softw..

[47]  U. Ziegler,et al.  The NIRVANA code: Parallel computational MHD with adaptive mesh refinement , 2008, Comput. Phys. Commun..

[48]  Rony Keppens,et al.  Hybrid block-AMR in cartesian and curvilinear coordinates: MHD applications , 2007, J. Comput. Phys..

[49]  Jie Zhang,et al.  A consistent and conservative scheme for MHD flows with complex boundaries on an unstructured Cartesian adaptive system , 2014, J. Comput. Phys..

[50]  K. Powell,et al.  Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows , 1996 .

[51]  Aimé Fournier,et al.  Geophysical-astrophysical spectral-element adaptive refinement (GASpAR): Object-oriented h-adaptive fluid dynamics simulation , 2006, J. Comput. Phys..

[52]  Alexei M. Khokhlov,et al.  Fully Threaded Tree Algorithms for Adaptive Refinement Fluid Dynamics Simulations , 1997, astro-ph/9701194.

[53]  Vladimir Kolobov,et al.  Adaptive kinetic-fluid solvers for heterogeneous computing architectures , 2015, J. Comput. Phys..

[54]  Hua Ji,et al.  A new adaptive mesh refinement data structure with an application to detonation , 2010, J. Comput. Phys..

[55]  Hyung Taek Ahn,et al.  Adaptive moment-of-fluid method , 2009, J. Comput. Phys..

[56]  X. Feng,et al.  AMR Simulations of Magnetohydrodynamic Problems by the CESE Method in Curvilinear Coordinates , 2010 .

[57]  Clinton P. T. Groth,et al.  A numerical study of solar wind—magnetosphere interaction for northward interplanetary magnetic field , 1999 .

[58]  Daniel F. Martin,et al.  CONSTRAINED-TRANSPORT MAGNETOHYDRODYNAMICS WITH ADAPTIVE MESH REFINEMENT IN CHARM , 2011, 1103.1878.

[59]  Michael Dumbser,et al.  A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement , 2013, Comput. Phys. Commun..

[60]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .