Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers
暂无分享,去创建一个
Alison P. Klein | Peter Kraft | Florence Demenais | Kyriaki Michailidou | Nilanjan Chatterjee | Nicola J. Camp | John K. Wiencke | Margaret R. Wrensch | Christopher I. Amos | Fredrik Wiklund | Amanda B. Spurdle | Christopher A. Haiman | Fredrick R. Schumacher | Douglas F. Easton | Neil E. Caporaso | Li Hsu | Nathaniel Rothman | Laufey T. Amundadottir | Maria Teresa Landi | Stephen J. Chanock | Susan L. Slager | Simon A. Gayther | Joe Dennis | Per Hall | Ian Tomlinson | Jacques Simard | Jenny Chang-Claude | Sonja I. Berndt | Stuart MacGregor | Marjanka K. Schmidt | Montserrat Garcia-Closas | Roger L. Milne | Clare Turnbull | D. Timothy Bishop | Mark P. Purdue | Michael Hoffmeister | Ulrike Peters | Graham Casey | Thomas A. Sellers | Stephen B. Gruber | Paul D. P. Pharoah | Parichoy Pal Choudhury | Ghislaine Scelo | Paul Brennan | Brian M. Wolpin | Ellen L. Goode | Brenda M. Birmann | Gloria M. Petersen | Rayjean J. Hung | Deborah J. Thompson | Amber N. Hurson | Andrew Berchuck | Jill Barnholtz-Sloan | Melissa L. Bondy | Donghui Li | Richard Houlston | Tom Grotmol | Immaculata De Vivo | Peter T. Campbell | Mark Jenkins | Katherine L. Nathanson | Rosalind A. Eeles | James McKay | Ali Amin Al Olama | Zsofia Kote-Jarai | Rajiv Kumar | Ben Kinnersley | Beatrice Melin | Joellen M. Schildkraut | Kirsten B. Moysich | Celeste L. Pearce | Harvey A. Risch | Stephanie L. Schmit | Puya Gharahkhani | Matthew H. Law | Mark H. Greene | Eric J. Jacobs | Yan Dora Zhang | Katherine A. McGlynn | Sarah V. Ward | David Whiteman | Peter A. Kanetsky | Mark M. Iles | Marlene D. Dalgaard | Haoyu Zhang | Tracy A. O’Mara | Rachel Z. Stolzenberg-Solomon | Douglas F. Roger L. Jacques Per Kyriaki Joe Marjanka K. Je Easton Milne Simard Hall Michailidou Denn | Puya David Gharahkhani Whiteman | Peter T. Michael Mark Ulrike Li Stephen B. Graham Stepha Campbell Hoffmeister Jenkins Peters Hsu Gru | Tracy A. Amanda B. Deborah J. Ian Immaculata O’Mara Spurdle Thompson Tomlinson De Vivo | Maria Teresa Matthew H. Mark M. Florence Rajiv Stuart Da Landi Law Iles Demenais Kumar MacGregor Bis | David T. Bishop | Melissa L. Richard John K. Beatrice Jill Ben Margaret R. Bondy Houlston Wiencke Melin Barnholtz-Sloa | Christopher I. Rayjean J. Paul James Neil E. Amos Hung Brennan McKay Caporaso | Sonja I. Brenda M. Nicola J. Peter Nathaniel Susan L. Berndt Birmann Camp Kraft Rothman Slager | Andrew Paul D. P. Thomas A. Simon A. Celeste L. Ellen L. Berchuck Pharoah Sellers Gayther Pearce Go | Christopher I. Paul James Amos Brennan McKay | Laufey T. Eric J. Alison P. Gloria M. Harvey A. Rachel Z. Amundadottir Jacobs Klein Petersen Risch S | Rosalind A. Christopher A. Zsofia Fredrick R. Ali Amin Eeles Haiman Kote-Jarai Schumacher Al Olama | Mark P. Ghislaine Purdue Scelo | Marlene D. Mark H. Tom Peter A. Katherine A. Katherine L. Dalgaard Greene Grotmol Kanetsky McGlynn
[1] Robert Karlsson,et al. Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor , 2017, Nature Genetics.
[2] Ryan D. Hernandez,et al. Recovery of trait heritability from whole genome sequence data , 2019, bioRxiv.
[3] Gary D Bader,et al. Association analysis identifies 65 new breast cancer risk loci , 2017, Nature.
[4] Stephanie A. Bien,et al. Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. , 2018, Gastroenterology.
[5] Nilanjan Chatterjee,et al. iCARE: An R package to build, validate and apply absolute risk models , 2020, PloS one.
[6] William S. Bush,et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes , 2017, Nature Genetics.
[7] Jane E. Visvader,et al. Cells of origin in cancer , 2011, Nature.
[8] Nilanjan Chatterjee,et al. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies , 2013, Nature Genetics.
[9] Peter Kraft,et al. Gene‐Environment Interactions in Cancer Epidemiology: A National Cancer Institute Think Tank Report , 2013, Genetic epidemiology.
[10] Christopher P. Fischer,et al. Genome-wide association study of colorectal cancer identifies six new susceptibility loci , 2015, Nature Communications.
[11] M. Daly,et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.
[12] Bin Tean Teh,et al. Genome-wide association study identifies multiple risk loci for renal cell carcinoma , 2017, Nature Communications.
[13] Hongyu Zhao,et al. Leveraging functional annotations in genetic risk prediction for human complex diseases , 2016, bioRxiv.
[14] Paolo Vineis,et al. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia , 2016, Nature Communications.
[15] D. Silverman,et al. Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). , 2012 .
[16] M. McCarthy,et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. , 2013, American journal of human genetics.
[17] K. D. Sørensen,et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci , 2018, Nature Genetics.
[18] O. Andreassen,et al. Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts , 2018, British Medical Journal.
[19] Jianxin Shi,et al. Developing and evaluating polygenic risk prediction models for stratified disease prevention , 2016, Nature Reviews Genetics.
[20] Peter Kraft,et al. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer , 2018, Nature Communications.
[21] Robert Karlsson,et al. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor , 2017, Nature Genetics.
[22] D. Rujescu,et al. Improved Detection of Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False Discovery Rate , 2013, PLoS genetics.
[23] Joseph K. Pickrell. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits , 2013, bioRxiv.
[24] S. Shete,et al. History of chickenpox in glioma risk: a report from the glioma international case–control study (GICC) , 2016, Cancer medicine.
[25] R. Houlston,et al. Genome-wide association studies of cancer: current insights and future perspectives , 2017, Nature Reviews Cancer.
[26] Y. Bossé,et al. Benefits and limitations of genome-wide association studies , 2019, Nature Reviews Genetics.
[27] Nilanjan Chatterjee,et al. Common genetic polymorphisms modify the effect of smoking on absolute risk of bladder cancer. , 2013, Cancer research.
[28] Hugues Sicotte,et al. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors , 2017, Nature Genetics.
[29] Paolo Vineis,et al. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia , 2017, Nature Communications.
[30] W. Willett,et al. Breast Cancer Risk From Modifiable and Nonmodifiable Risk Factors Among White Women in the United States. , 2016, JAMA oncology.
[31] O. Andreassen,et al. All SNPs Are Not Created Equal: Genome-Wide Association Studies Reveal a Consistent Pattern of Enrichment among Functionally Annotated SNPs , 2013, PLoS genetics.
[32] Tom R. Gaunt,et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis , 2016, bioRxiv.
[33] Clare Turnbull,et al. Cancer genetics, precision prevention and a call to action , 2018, Nature Genetics.
[34] Peter Kraft,et al. Identification of nine new susceptibility loci for endometrial cancer , 2018, Nature Communications.
[35] A. Olshan,et al. Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer , 2016, Nature Genetics.
[36] Nilanjan Chatterjee,et al. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits , 2018, Nature Genetics.
[37] Marko Hočevar,et al. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma , 2015, Nature Genetics.
[38] N. Patterson,et al. Extreme Polygenicity of Complex Traits Is Explained by Negative Selection. , 2019, American journal of human genetics.
[39] Dorothy Strickland,et al. The challenge of using virtual reality in telerehabilitation. , 2004, Telemedicine journal and e-health : the official journal of the American Telemedicine Association.
[40] G. Davey Smith,et al. Mendelian randomization: genetic anchors for causal inference in epidemiological studies , 2014, Human molecular genetics.
[41] Kristen S Purrington,et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes , 2018, American Journal of Human Genetics.
[42] G. Parmigiani,et al. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. , 2016, JAMA.
[43] Douglas F. Easton,et al. Polygenic susceptibility to breast cancer and implications for prevention , 2002, Nature Genetics.
[44] Kconfab Investigators,et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer , 2017 .
[45] Mary E. Haas,et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations , 2018, Nature Genetics.
[46] P. Visscher,et al. Common SNPs explain a large proportion of heritability for human height , 2011 .
[47] Jian Su,et al. Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types. , 2015, Journal of the National Cancer Institute.
[48] Ellen T. Gelfand,et al. The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.
[49] Peter Kraft,et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis , 2012, Nature Genetics.
[50] Luke R. Lloyd-Jones,et al. Signatures of negative selection in the genetic architecture of human complex traits , 2018, Nature Genetics.