Concept for a Future Super Proton-Proton Collider

Author(s): Tang, Jingyu; Berg, J Scott; Chai, Weiping; Chen, Fusan; Chen, Nian; Chou, Weiren; Dong, Haiyi; Gao, Jie; Han, Tao; Leng, Yongbin; Li, Guangrui; Gupta, Ramesh; Li, Peng; Li, Zhihui; Liu, Baiqi; Liu, Yudong; Lou, Xinchou; Luo, Qing; Malamud, Ernie; Mao, Lijun; Palmer, Robert B; Peng, Quanling; Peng, Yuemei; Ruan, Manqi; Sabbi, GianLuca; Su, Feng; Su, Shufang; Stratakis, Diktys; Sun, Baogeng; Wang, Meifen; Wang, Jie; Wang, Liantao; Wang, Xiangqi; Wang, Yifang; Wang, Yong; Xiao, Ming; Xing, Qingzhi; Xu, Qingjin; Xu, Hongliang; Xu, Wei; Witte, Holger; Yan, Yingbing; Yang, Yongliang; Yang, Jiancheng; Yuan, Youjin; Zhang, Bo; Zhang, Yuhong; Zheng, Shuxin; Zhu, Kun; Zhu, Zian; Zou, Ye | Abstract: Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

[1]  R. Bruce Beam loss mechanisms in relativistic heavy-ion colliders , 2009 .

[2]  P. Ostroumov,et al.  Superconducting Hadron Linacs , 2013 .

[3]  D. J. Mead,et al.  The measurement of the loss factors of beams and plates with constrained and unconstrained damping layers: A critical assessment , 2007 .

[4]  I. Hinchliffe,et al.  Luminosity goals for a 100-TeV pp collider , 2015, 1504.06108.

[5]  K. Wittenburg,et al.  BEAM LOSS MONITORING AND CONTROL , 2002 .

[6]  HI-LUMI LHC COLLIMATION STUDIES WITH MERLIN CODE , 2014 .

[7]  Zian Zhu,et al.  Magnetic Design Study of the High-Field Common-Coil Dipole Magnet for High-Energy Accelerators , 2015, IEEE Transactions on Applied Superconductivity.

[8]  Resonant slow extraction in synchrotrons using anti-symmetric sextupole fields , 2016, 1601.03113.

[9]  Jingyu Tang,et al.  A novel structure of multipole field magnets and their applications in uniformizing beam spot at target , 2012 .

[10]  N. Lasheras Transverse and longitudinal beam collimation in a high-energy proton collider (LHC) , 1998 .

[11]  D. Schulte,et al.  Simulation study of electron cloud induced instabilities and emittance growth for the CERN Large Hadron Collider proton beam , 2005 .

[12]  A. Barr,et al.  Higgs self-coupling measurements at a 100 TeV hadron collider , 2014, 1412.7154.

[13]  P. Collier,et al.  Present understanding of electron cloud effects in the Large Hadron Collider , 2003, Proceedings of the 2003 Particle Accelerator Conference.

[14]  Miguel A. Furman,et al.  The Electron-Cloud Effect in the Arcs of the LHC , 1998 .

[15]  M. Oriunno,et al.  First results on the SPS beam collimation with bent crystals , 2010 .

[16]  C. Hajdu,et al.  Beam Loss Monitoring for LHC Machine Protection , 2012 .

[17]  S. Striganov,et al.  Beam Losses and Background Loads on Collider Detectors Due to Beam-Gas Interactions in the LHC , 2009 .

[18]  M. Sumption,et al.  Refinement of Nb3Sn grain size by the generation of ZrO2 precipitates in Nb3Sn wires , 2014, 1402.3001.

[19]  K. Ohmi,et al.  Beam-beam studies for the High-Energy LHC , 2011, 1108.1871.

[20]  Christian Scheuerlein,et al.  Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T. , 2014, Nature materials.

[21]  R. Gupta,et al.  A common coil design for high field 2-in-1 accelerator magnets , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).

[22]  T. Elliott,et al.  Stress management in high-field dipoles , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).