Multi-dimensional classification via stacked dependency exploitation

Multi-dimensional classification (MDC) aims to build classification models for multiple heterogenous class spaces simultaneously, where each class space characterizes the semantics of an object w.r.t. one specific dimension. Modeling dependencies among class spaces plays a key role in solving MDC tasks, where most approaches work by assuming directed acyclic graph (DAG) structure or random chaining structure over class spaces. Different from existing probabilistic strategies, a deterministic strategy named Seem for dependency modeling is proposed in this paper via stacked dependency exploitation. In the first-level, pairwise dependencies are considered which can be modeled more reliably than modeling full dependencies among all class spaces by DAG or chaining structure. In the second-level, the class label of unseen instance w.r.t. each class space is determined by adaptively stacking predictive outputs from first-level pairwise classifiers. Experimental results show that stacked dependency exploitation leads to superior performance against stateof-the-art MDC approaches.

[1]  María Concepción Bielza Lozoya,et al.  Multidimensional classifiers for neuroanatomical data , 2015, ICML 2015.

[2]  Milos Hauskrecht,et al.  An efficient probabilistic framework for multi-dimensional classification , 2013, CIKM.

[3]  Sanyang Liu,et al.  A hybrid method for learning multi-dimensional Bayesian network classifiers based on an optimization model , 2015, Applied Intelligence.

[4]  Concha Bielza,et al.  Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty , 2014, Front. Comput. Neurosci..

[5]  Concha Bielza,et al.  Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers , 2013, Artif. Intell. Medicine.

[6]  Craig A. Knoblock,et al.  A Survey of Digital Map Processing Techniques , 2014, ACM Comput. Surv..

[7]  Concha Bielza,et al.  Bayesian Chain Classifiers for Multidimensional Classification , 2011, IJCAI.

[8]  Linda C. van der Gaag,et al.  Multi-dimensional Bayesian Network Classifiers , 2006, Probabilistic Graphical Models.

[9]  Xin Geng,et al.  Binary relevance for multi-label learning: an overview , 2018, Frontiers of Computer Science.

[10]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[11]  Concha Bielza,et al.  Multi-dimensional Bayesian Network Classifier Trees , 2018, IDEAL.

[12]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[13]  Chen Chen,et al.  Incorporating Label Embedding and Feature Augmentation for Multi-Dimensional Classification , 2020, AAAI.

[14]  José Antonio Lozano,et al.  Multi-Objective Learning of Multi-Dimensional Bayesian Classifiers , 2008, 2008 Eighth International Conference on Hybrid Intelligent Systems.

[15]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[16]  Luca Martino,et al.  Efficient monte carlo methods for multi-dimensional learning with classifier chains , 2012, Pattern Recognit..

[17]  Songcan Chen,et al.  A convex formulation for multiple ordinal output classification , 2019, Pattern Recognit..

[18]  Saso Dzeroski,et al.  Ensembles of Multi-Objective Decision Trees , 2007, ECML.

[19]  Vladimir Pavlovic,et al.  Copula Ordinal Regression for Joint Estimation of Facial Action Unit Intensity , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Zhi-Hua Zhou,et al.  Abductive learning: towards bridging machine learning and logical reasoning , 2019, Science China Information Sciences.

[21]  Concha Bielza,et al.  International Journal of Approximate Reasoning Tractability of most probable explanations in multidimensional Bayesian network classifiers ✩ , 2022 .

[22]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[23]  Hiroaki Harai,et al.  Multi-Target Classification Based Automatic Virtual Resource Allocation Scheme , 2019, IEICE Trans. Inf. Syst..

[24]  Concha Bielza,et al.  Multi-dimensional classification with Bayesian networks , 2011, Int. J. Approx. Reason..

[25]  Min-Ling Zhang,et al.  Maximum Margin Multi-Dimensional Classification , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[26]  Concha Bielza,et al.  Multi-Dimensional Classification with Super-Classes , 2014, IEEE Transactions on Knowledge and Data Engineering.

[27]  Min-Ling Zhang,et al.  A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.

[28]  Hagit Shatkay,et al.  Multi-dimensional classification of biomedical text: Toward automated, practical provision of high-utility text to diverse users , 2008, Bioinform..

[29]  Iñaki Inza,et al.  Assisting in search heuristics selection through multidimensional supervised classification: A case study on software testing , 2014, Inf. Sci..

[30]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[31]  C. Bielza,et al.  PREDICTING THE EQ-5D FROM THE PARKINSON'S DISEASE QUESTIONNAIRE PDQ-8 USING MULTI-DIMENSIONAL BAYESIAN NETWORK CLASSIFIERS , 2014 .

[32]  Sebastián Ventura,et al.  A Tutorial on Multilabel Learning , 2015, ACM Comput. Surv..

[33]  José Antonio Lozano,et al.  Using Multidimensional Bayesian Network Classifiers to Assist the Treatment of Multiple Sclerosis , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[34]  Min-Ling Zhang,et al.  Multi-Dimensional Classification via kNN Feature Augmentation , 2019, AAAI.

[35]  Songcan Chen,et al.  Multi-dimensional classification via a metric approach , 2018, Neurocomputing.

[36]  Janneke H. Bolt,et al.  Balanced sensitivity functions for tuning multi-dimensional Bayesian network classifiers , 2017, Int. J. Approx. Reason..

[37]  Verayuth Lertnattee,et al.  Multi-Dimensional Text Classification , 2002, COLING.