Analysis of Quantized Electrical Characteristics of Microscale TiO2 Ink-Jet Printed Memristor

We demonstrate the ink-jet printed fabrication technique for TiO2-based memristor, followed by detailed analysis of electrical characteristics and development of a new model that considers observed phenomena of quantized conductance steps. The existence of pinched hysteretic current-voltage characteristics is evidence of memristive behavior, provided by the reversible atomic rearrangement taking place in the functional layer. For the first time, performed electrical measurement on the micrometer thickness devices based on TiO2 active layer has captured the plateaux steps of the conductance at integer multiples of elementary quantum conductance. This behavior is consistent with the assumption that transport from electrode to electrode emerges through confined paths of conductive filaments with radius in the nanometer size range. Moreover, we introduce a novel model, based on the diffusion equation for ballistic transport in memristive devices, which considers the conductance plateaux steps.

[1]  Uri C. Weiser,et al.  TEAM: ThrEshold Adaptive Memristor Model , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Hiroshi Iwai,et al.  Nonlinear conductance quantization effects in CeOx/SiO2-based resistive switching devices , 2012 .

[3]  Rainer Waser,et al.  TiO2—a prototypical memristive material , 2011, Nanotechnology.

[4]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[5]  B. Grzybowski,et al.  Controlling Reversible Dielectric Breakdown in Metal/Polymer Nanocomposites , 2012, Advanced materials.

[6]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[7]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[8]  Y. Pershin,et al.  Spin Memristive Systems: Spin Memory Effects in Semiconductor Spintronics , 2008, 0806.2151.

[9]  Jeyavijayan Rajendran,et al.  Leveraging Memristive Systems in the Construction of Digital Logic Circuits , 2012, Proceedings of the IEEE.

[10]  A. J. Kenyon,et al.  Quantum Conductance in Silicon Oxide Resistive Memory Devices , 2013, Scientific Reports.

[11]  J. Yang,et al.  Electrical transport and thermometry of electroformed titanium dioxide memristive switches , 2009 .

[12]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[13]  Yiwei Liu,et al.  Observation of Conductance Quantization in Oxide‐Based Resistive Switching Memory , 2012, Advanced materials.

[14]  Amir Dabiran,et al.  SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications , 2012 .

[15]  L. Hao,et al.  Fabrication and Thermoelectric Properties of Magneli Phases by Adding Ti into TiO2 , 2011 .

[16]  V. Eyert,et al.  Charge order, orbital order, and electron localization in the Magnéli phase Ti4O7 , 2004, cond-mat/0404059.

[17]  龙世兵 Quantum-size effects in hafnium-oxide resistive switching , 2013 .

[18]  S. Chaudhary,et al.  Memristive Behavior in Thin Anodic Titania , 2010, IEEE Electron Device Letters.

[19]  D. Ielmini,et al.  Modeling of Set/Reset Operations in NiO-Based Resistive-Switching Memory Devices , 2009, IEEE Transactions on Electron Devices.

[20]  Matthias Wuttig,et al.  Design Rules for Phase‐Change Materials in Data Storage Applications , 2011, Advanced materials.

[21]  Yusuf Leblebici,et al.  Multiterminal Memristive Nanowire Devices for Logic and Memory Applications: A Review , 2012, Proceedings of the IEEE.

[22]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[23]  T. Hasegawa,et al.  Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch , 2012, Nanotechnology.

[24]  J. Suehle,et al.  A Flexible Solution-Processed Memristor , 2009, IEEE Electron Device Letters.

[25]  Sébastien Sanaur,et al.  Inkjet-printed polymer thin-film transistors : Enhancing performances by contact resistances engineering , 2008 .

[26]  P. Harrison Quantum wells, wires, and dots : theoretical and computational physics , 2016 .

[27]  K. Furuya,et al.  Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior , 2008 .

[28]  G. Oskam,et al.  Phase-pure TiO2 nanoparticles: anatase, brookite and rutile , 2008, Nanotechnology.

[29]  Kyung Hyun Choi,et al.  Fabrication of TiO2 thin film memristor device using electrohydrodynamic inkjet printing , 2012 .

[30]  L. Chua Memristor-The missing circuit element , 1971 .

[31]  Chi-Jung Chang,et al.  Selective growth of ZnO nanorods for gas sensors using ink-jet printing and hydrothermal processes , 2010 .

[32]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[33]  Rainer Waser,et al.  Nanoelectronics and Information Technology , 2012 .

[34]  K. Jin,et al.  Structure and characteristics of ultrathin indium tin oxide films , 2011 .

[35]  Supriyo Datta,et al.  Lessons from Nanoelectronics: A New Perspective on Transport , 2012 .

[36]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[37]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[38]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[39]  D. Ielmini,et al.  Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices , 2009, IEEE Transactions on Electron Devices.

[40]  A. Maric,et al.  Low-Cost CPW Meander Inductors Utilizing Ink-Jet Printing on Flexible Substrate for High-Frequency Applications , 2013, IEEE Transactions on Electron Devices.

[41]  A. Kilcoyne,et al.  Characterization of electroforming-free titanium dioxide memristors , 2013, Beilstein journal of nanotechnology.

[42]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[43]  A. Adamatzky,et al.  Drop-coated titanium dioxide memristors , 2012, 1205.2885.

[44]  Shimeng Yu,et al.  An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation , 2011, IEEE Transactions on Electron Devices.

[45]  Christopher R. Bowen,et al.  AC electrical properties of TiO2 and Magnéli phases, TinO2n − 1 , 2012 .