Mechanical influences on suture development and patency.

In addition to their role in skull growth, sutures are sites of flexibility between the more rigid bones. Depending on the suture, predominant loading during life may be either tensile or compressive. Loads are transmitted across sutures via collagenous fibers and a fluid-rich extracellular matrix and can be quasi-static (growth of neighboring tissues) or intermittent (mastication). The mechanical properties of sutures, while always viscoelastic, are therefore quite different for tensile versus compressive loading. The morphology of individual sutures reflects the nature of local loading, evidently by a process of developmental adaptation. In vivo or ex vivo, sutural cells respond to tensile or cyclic loading by expressing markers of proliferation and differentiation, whereas compressive loading appears to favor osteogenesis. Braincase and facial sutures exhibit similar mechanical behavior and reactions despite their different natural environments.