Interface thermal resistance between dissimilar anharmonic lattices.

We study interface thermal resistance (ITR) in a system consisting of two dissimilar anharmonic lattices exemplified by the Fermi-Pasta-Ulam and Frenkel-Kontorova models. It is found that the ITR is asymmetric; namely, it depends on how the temperature gradient is applied. The dependence of the ITR on the coupling constant, temperature, temperature difference, and system size is studied. Possible applications in nanoscale heat management and control are discussed.

[1]  David K Campbell,et al.  Introduction: The Fermi-Pasta-Ulam problem--the first fifty years. , 2005, Chaos.

[2]  G. Casati,et al.  Thermal diode: rectification of heat flux. , 2004, Physical review letters.

[3]  D. Bedeaux,et al.  Thermal flux through a surface of n-octane. A non-equilibrium molecular dynamics study , 2004 .

[4]  A. Pereverzev Fermi-Pasta-Ulam beta lattice: Peierls equation and anomalous heat conductivity. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[6]  O. Gendelman,et al.  Heat conduction in one-dimensional lattices with on-site potential. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  A. Politi,et al.  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[8]  G. Casati,et al.  Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. , 2002, Physical review letters.

[9]  D. Bedeaux,et al.  Nonequilibrium Molecular Dynamics Simulations of Steady-State Heat and Mass Transport in Condensation. II. Transfer Coefficients. , 2001, Journal of colloid and interface science.

[10]  D. Kusnezov,et al.  Fermi-Pasta-Ulam beta model: boundary jumps, Fourier's law, and scaling. , 2001, Physical review letters.

[11]  D. Kusnezov,et al.  Fermi-Pasta-Ulam beta Model , 2001 .

[12]  Hafskjold,et al.  Nonequilibrium Molecular Dynamics Simulations of Steady-State Heat and Mass Transport in Condensation. , 2000, Journal of colloid and interface science.

[13]  Athanassios S. Fokas,et al.  Mathematical Physics 2000 , 2000 .

[14]  Zhao,et al.  Heat conduction in one-dimensional nonintegrable systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  C. A. Ward,et al.  Temperature measured close to the interface of an evaporating liquid , 1999 .

[16]  S. Lepri Relaxation of classical many-body Hamiltonians in one dimension , 1998, cond-mat/9809105.

[17]  Bambi Hu,et al.  ENERGY TRANSPORT BETWEEN TWO ATTRACTORS CONNECTED BY A FERMI-PASTA-ULAM CHAIN , 1998, chao-dyn/9802010.

[18]  Bambi Hu,et al.  HEAT CONDUCTION IN ONE-DIMENSIONAL CHAINS , 1997, cond-mat/9712064.

[19]  A. Politi,et al.  Heat Conduction in Chains of Nonlinear Oscillators , 1997 .

[20]  M. Machida,et al.  Thermal conductivity in one-dimensional lattices of Fermi-Pasta-Ulam type , 1993 .

[21]  A. Wightman,et al.  Mathematical Physics. , 1930, Nature.