Hermite-Gaussian modal laser beams with orbital angular momentum.

A relationship for the complex amplitude of generalized paraxial Hermite-Gaussian (HG) beams is deduced. We show that under certain parameters, these beams transform into the familiar HG modes and elegant HG beams. The orbital angular momentum (OAM) of a linear combination of two generalized HG beams with a phase shift of π/2, with their double indices composed of adjacent integer numbers taken in direct and inverse order, is calculated. The modulus of the OAM is shown to be an integer number for the combination of two HG modes, always equal to unity for the superposition of two elegant HG beams, and a fractional number for two hybrid HG beams. Interestingly, a linear combination of two such HG modes also presents a mode that is characterized by a nonzero OAM and the lack of radial symmetry but does not rotate during propagation.

[1]  D. Willetts,et al.  Interference properties of a light beam having a helical wave surface , 1979 .

[2]  Pravin Vaity,et al.  Formation of optical vortices through superposition of two Gaussian beams. , 2013, Applied optics.

[3]  P. Lam,et al.  Generation and interferometric analysis of high charge optical vortices , 2013 .

[4]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  Herwig Kogelnik,et al.  Laser beams and resonators , 1966 .

[6]  Victor A. Soifer,et al.  Rotation of laser beams with zero of the orbital angular momentum , 2007 .

[7]  Sunil Vyas,et al.  Interferometric optical vortex array generator. , 2007, Applied optics.

[8]  J. Humblet,et al.  Sur le moment d'impulsion d'une onde électromagnétique , 1943 .

[9]  Eugeny Abramochkin,et al.  Generalized Gaussian beams , 2004 .

[10]  czek,et al.  An analysis of an optical vortices interferometer with focused beam , 2009 .

[11]  J. Donegan,et al.  Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction. , 2010, Optics express.

[12]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[13]  S. N. Khonina,et al.  An analysis of the angular momentum of a light field in terms of angular harmonics , 2001 .

[14]  D. S. Mehta,et al.  Generation of Optical Vortex Arrays Using Single-Element Reversed-Wavefront Folding Interferometer , 2012 .

[15]  Anthony E. Siegman,et al.  Hermite–gaussian functions of complex argument as optical-beam eigenfunctions , 1973 .

[16]  Miles J Padgett,et al.  Light beams with fractional orbital angular momentum and their vortex structure. , 2008, Optics express.

[17]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[18]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[19]  G. V. Uspleniev,et al.  The Phase Rotor Filter , 1992 .

[20]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[21]  E. Abramochkin,et al.  Beam transformations and nontransformed beams , 1991 .

[22]  John F Nye,et al.  The elliptic umbilic diffraction catastrophe , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .