A Quantitative Analysis of an EEG Epileptic Record Based on MultiresolutionWavelet Coefficients

The characterization of the dynamics associated with electroencephalogram (EEG) signal combining an orthogonal discrete wavelet transform analysis with quantifiers originated from information theory is reviewed. In addition, an extension of this methodology based on multiresolution quantities, called wavelet leaders, is presented. In particular, the temporal evolution of Shannon entropy and the statistical complexity evaluated with different sets of multiresolution wavelet coefficients are considered. Both methodologies are applied to the quantitative EEG time series analysis of a tonic-clonic epileptic seizure, and comparative results are presented. In particular, even when both methods describe the dynamical changes of the EEG time series, the one based on wavelet leaders presents a better time resolution.

[1]  G. Cascino,et al.  Subcortical Dementia , 1991, Neurology.

[2]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[3]  Osvaldo A Rosso,et al.  Entropy changes in brain function. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[4]  L D Iasemidis,et al.  Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. , 1997, Electroencephalography and clinical neurophysiology.

[5]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[6]  Ricardo López-Ruiz,et al.  Statistical Complexity and Fisher-Shannon Information. Applications , 2012, ArXiv.

[7]  Patrice Abry,et al.  Wavelet leaders and bootstrap for multifractal analysis of images , 2009, Signal Process..

[8]  M. Unser,et al.  Interpolation Revisited , 2000, IEEE Trans. Medical Imaging.

[9]  F. H. Lopes da Silva,et al.  Chaos or noise in EEG signals; dependence on state and brain site. , 1991, Electroencephalography and clinical neurophysiology.

[10]  J. Gotman,et al.  Frequency content of EEG and EMG at seizure onset: possibility of removal of EMG artefact by digital filtering. , 1981, Electroencephalography and clinical neurophysiology.

[11]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[12]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[13]  M. E. Pereyraa,et al.  Wavelet Jensen – Shannon divergence as a tool for studying the dynamics of frequency band components in EEG epileptic seizures , 2007 .

[14]  Osvaldo A. Rosso,et al.  Brain electrical activity analysis using wavelet-based informational tools (II): Tsallis non-extensivity and complexity measures , 2003 .

[15]  Osvaldo A. Rosso,et al.  Wavelet analysis of generalized tonic-clonic epileptic seizures , 2003, Signal Process..

[16]  J. Crutchfield,et al.  Measures of statistical complexity: Why? , 1998 .

[17]  C. B. Trites Epileptic seizures. , 1951, Canadian Medical Association journal.

[18]  Alejandra Figliola,et al.  Order/disorder in brain electrical activity , 2004 .

[19]  Osvaldo A. Rosso,et al.  Wavelet Jensen–Shannon divergence as a tool for studying the dynamics of frequency band components in EEG epileptic seizures , 2007 .

[20]  W. J. Williams,et al.  Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures , 2005, Brain Topography.

[21]  I. Percival,et al.  A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems , 1979 .

[22]  Osvaldo A. Rosso,et al.  Statistical complexity and disequilibrium , 2003 .

[23]  Osvaldo A. Rosso,et al.  Intensive entropic non-triviality measure , 2004 .

[24]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[25]  Pierrick Legrand,et al.  Local Regularity and Multifractal Methods for Image and Signal Analysis , 2010 .

[26]  O. A. Rosso,et al.  EEG analysis using wavelet-based information tools , 2006, Journal of Neuroscience Methods.

[27]  T M Darcey,et al.  Spatio-temporal EEG measures and their application to human intracranially recorded epileptic seizures. , 1985, Electroencephalography and clinical neurophysiology.

[28]  Osvaldo A. Rosso,et al.  Generalized statistical complexity measures: Geometrical and analytical properties , 2006 .

[29]  E. Basar,et al.  Wavelet entropy: a new tool for analysis of short duration brain electrical signals , 2001, Journal of Neuroscience Methods.

[30]  Leonidas D. Iasemidis,et al.  The evolution with time of the spatial distribution of the largest Lyapunov exponent on the human epileptic cortex , 1991 .

[31]  Osvaldo A. Rosso,et al.  Quantitative EEG analysis of the maturational changes associated with childhood absence epilepsy , 2005 .

[32]  C. Elger,et al.  CAN EPILEPTIC SEIZURES BE PREDICTED? EVIDENCE FROM NONLINEAR TIME SERIES ANALYSIS OF BRAIN ELECTRICAL ACTIVITY , 1998 .

[33]  O. A. Rossoa,et al.  Evidence of self-organization in brain electrical activity using wavelet-based informational tools , 2004 .

[34]  Juliana Yordanova,et al.  A transient dominance of theta ERP component characterizes passive auditory processing: evidence from a developmental study , 2001, Neuroreport.

[35]  Regina Berretta,et al.  Distinguishing childhood absence epilepsy patients from controls by the analysis of their background brain electrical activity (II): A combinatorial optimization approach for electrode selection , 2009, Journal of Neuroscience Methods.

[36]  Alejandra Figliola,et al.  Time-frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function , 1998 .

[37]  Stéphane Jaffard,et al.  Oscillation spaces: Properties and applications to fractal and multifractal functions , 1998 .

[38]  V. Samar,et al.  Wavelet Analysis of Neuroelectric Waveforms: A Conceptual Tutorial , 1999, Brain and Language.

[39]  Patrice Abry,et al.  Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders , 2008 .

[40]  Z J Kowalik,et al.  Changes of chaoticness in spontaneous EEG/MEG , 1994, Integrative physiological and behavioral science : the official journal of the Pavlovian Society.

[41]  Roberto Fabio Leonarduzzi,et al.  Wavelet leader based multifractal analysis of heart rate variability during myocardial ischaemia , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[42]  D K Prasher Clinical Applications of Computer Analysis of EEG and other Neurophysiological Signals , 1988 .

[43]  I. Grosse,et al.  Analysis of symbolic sequences using the Jensen-Shannon divergence. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Pablo Moscato,et al.  Distinguishing childhood absence epilepsy patients from controls by the analysis of their background brain electrical activity , 2009, Journal of Neuroscience Methods.

[45]  Eduardo Serrano,et al.  An Entropy Based in Wavelet Leaders to Quantify the Local Regularity of a Signal and its Application to Analize the Dow Jones Index , 2012, Int. J. Wavelets Multiresolution Inf. Process..

[46]  Juliana Yordanova,et al.  A transient dominance of theta event-related brain potential component characterizes stimulus processing in an auditory oddball task , 2003, Clinical Neurophysiology.

[47]  Alejandra Figliola,et al.  A discovery of new features of gastropod local field potentials by application of wavelet tools , 2002, Journal of Neuroscience Methods.

[48]  T. Pedley Current Practice of Clinical Electroenceph‐alography , 1980, Neurology.

[49]  Pengjian Shang,et al.  The application of Hölder exponent to traffic congestion warning , 2006 .

[50]  E. Basar,et al.  Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance , 2002, Journal of Neuroscience Methods.

[51]  Ricardo López-Ruiz,et al.  Chapter 4 Statistical Complexity and Fisher-Shannon Information : Applications , 2011 .

[52]  A. Shiryayev New Metric Invariant of Transitive Dynamical Systems and Automorphisms of Lebesgue Spaces , 1993 .

[53]  S. Mallat A wavelet tour of signal processing , 1998 .

[54]  Antoine Rémond,et al.  Methods of Analysis of Brain Electrical and Magnetic Signals , 1987 .

[55]  O. A. Rossoa,et al.  Brain electrical activity analysis using wavelet-based informational tools , 2002 .

[56]  Emmanuel Bacry,et al.  THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .

[57]  Osvaldo A. Rosso,et al.  Wavelet entropy in event-related potentials: a new method shows ordering of EEG oscillations , 2001, Biological Cybernetics.

[58]  Ricardo López-Ruiz,et al.  A Statistical Measure of Complexity , 1995, ArXiv.

[59]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[60]  Patrice Abry,et al.  Detecting oscillating singularities in multifractal analysis: Application to hydrodynamic turbulence , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[61]  S. Jaffard Wavelet Techniques in Multifractal Analysis , 2004 .

[62]  L. Wilkins The Epileptic Seizure , 1958, Neurology.

[63]  Osvaldo A. Rosso,et al.  Characterization of time dynamical evolution of electroencephalographic epileptic records , 2002 .

[64]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .