An adaptive spatial diversity receiver for non-Gaussian interference and noise

Standard linear diversity combining techniques are not effective in combating fading in the presence of non-Gaussian noise. An adaptive spatial diversity receiver is developed for wireless communication channels with slow, flat fading and additive non-Gaussian noise. The noise is modeled as a mixture of Gaussian distributions, and the expectation-maximization (EM) algorithm is used to derive estimates for the model parameters. The parameter estimates are used in a generalized likelihood ratio test to reproduce the transmitted signals. The new receiver is shown to be relatively insensitive to errors in the parameter estimates as well as to errors in modeling the actual noise distribution.

[1]  Chrysostomos L. Nikias,et al.  Incoherent receivers in alpha-stable impulsive noise , 1995, IEEE Trans. Signal Process..

[2]  Louis A. Liporace,et al.  Maximum likelihood estimation for multivariate observations of Markov sources , 1982, IEEE Trans. Inf. Theory.

[3]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[4]  S. Kassam Signal Detection in Non-Gaussian Noise , 1987 .

[5]  George A. Wright,et al.  Nonparametric density estimation and detection in impulsive interference channels. I. Estimators , 1994, IEEE Trans. Commun..

[6]  H. Vincent Poor,et al.  Parameter estimation for Middleton Class A interference processes , 1989, IEEE Trans. Commun..

[7]  Saleem A. Kassam,et al.  Nonlinear color image restoration using extended radial basis function networks , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[8]  J. Modestino Adaptive Detection of Signals in Impulsive Noise Environments , 1977, IEEE Trans. Commun..

[9]  Saleem A. Kassam,et al.  RBFN restoration of nonlinearly degraded images , 1996, IEEE Trans. Image Process..

[10]  A. Öztürk,et al.  Non-Gaussian random vector identification using spherically invariant random processes , 1993 .

[11]  Marco Lops,et al.  Canonical detection in spherically invariant noise , 1995, IEEE Trans. Commun..

[12]  Chrysostomos L. Nikias,et al.  Maximum likelihood localization of sources in noise modeled as a stable process , 1995, IEEE Trans. Signal Process..

[13]  Marco Lops,et al.  Optimum detection of fading signals in impulsive noise , 1995, IEEE Trans. Commun..

[14]  C. E. Goutis,et al.  Performance of optimum threshold incoherent diversity in non-Gaussian noise and fading , 1989 .

[15]  Norihiko Morinaga,et al.  Performance analysis of QAM systems under class A impulsive noise environment , 1995 .

[16]  Alfred O. Hero,et al.  Space-alternating generalized expectation-maximization algorithm , 1994, IEEE Trans. Signal Process..

[17]  D. Middleton,et al.  Optimum Reception in an Impulsive Interference Environment - Part II: Incoherent Reception , 1977, IEEE Transactions on Communications.

[18]  Costas N. Georghiades,et al.  Sequence estimation in the presence of random parameters via the EM algorithm , 1997, IEEE Trans. Commun..

[19]  A. Spaulding,et al.  Optimum Reception in an Impulsive Interference Environment - Part I: Coherent Detection , 1977, IEEE Transactions on Communications.

[20]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[21]  Kenneth S. Vastola,et al.  Threshold Detection in Narrow-Band Non-Gaussian Noise , 1984, IEEE Trans. Commun..

[22]  Charles W. Therrien,et al.  Discrete Random Signals and Statistical Signal Processing , 1992 .

[23]  Richard D. Gitlin,et al.  The impact of antenna diversity on the capacity of wireless communication systems , 1994, IEEE Trans. Commun..

[24]  S.A. Kassam,et al.  Robust techniques for signal processing: A survey , 1985, Proceedings of the IEEE.

[25]  Carl-Erik W. Sundberg,et al.  Advanced techniques for modulation, error correction, channel equalization, and diversity , 1993, AT&T Technical Journal.

[26]  Theodore S. Rappaport,et al.  Measurements and Models of Radio Frequency Impulsive Noise for Indoor Wireless Communications , 1993, IEEE J. Sel. Areas Commun..

[27]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[28]  Luigi Paura,et al.  Optimum threshold diversity reception of NCFSK signals in non-gaussian noise , 1990 .

[29]  J. A. Catipovic,et al.  Spatial diversity processing for underwater acoustic telemetry , 1991 .

[30]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[31]  J. Ilow,et al.  Detection for binary transmission in a mixture of Gaussian noise and impulsive noise modeled as an alpha-stable process , 1994, IEEE Signal Processing Letters.

[32]  H. Vincent Poor,et al.  Iterative multiuser receivers for CDMA channels: an EM-based approach , 1996, IEEE Trans. Commun..

[33]  Chrysostomos L. Nikias,et al.  Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha-stable process , 1995, IEEE Trans. Commun..

[34]  Theodore S. Rappaport,et al.  Characteristics of impulsive noise in the 450-MHz band in hospitals and clinics , 1998 .

[35]  Vijay K. Rohatgi,et al.  Robustness of statistical tests , 1989 .

[36]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[37]  Luigi Paura,et al.  Asymptotically Optimum Space-Diversity Detection in Non-Gaussian Noise , 1986, IEEE Trans. Commun..

[38]  P. A. Delaney,et al.  Signal detection in multivariate class-A interference , 1995, IEEE Trans. Commun..

[39]  H. Vincent Poor,et al.  Performance of DS/SSMA Communications in Impulsive Channels - Part I: Linear Correlation Receivers , 1986, IEEE Transactions on Communications.

[40]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[41]  D. W. J. Stein Detection of random signals in Gaussian mixture noise , 1995, IEEE Trans. Inf. Theory.

[42]  James W. Modestino,et al.  Detection of weak signals in narrowband non-Gaussian noise , 1979, IEEE Trans. Inf. Theory.

[43]  J. D. Parsons,et al.  The Mobile Radio Propagation Channel , 1991 .