On combinations of propositional dynamic logic and doxastic modal logics

We prove completeness and decidability results for a family of combinations of propositional dynamic logic and unimodal doxastic logics in which the modalities may interact. The kind of interactions we consider include three forms of commuting axioms, namely, axioms similar to the axiom of perfect recall and the axiom of no learning from temporal logic, and a Church–Rosser axiom. We investigate the influence of the substitution rule on the properties of these logics and propose a new semantics for the test operator to avoid unwanted side effects caused by the interaction of the classic test operator with the extra interaction axioms.

[1]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[2]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[3]  Renate A. Schmidt,et al.  Multi-Agent Dynamic Logics with Informational Test , 2004, Annals of Mathematics and Artificial Intelligence.

[4]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[5]  Renate A. Schmidt,et al.  Combining Dynamic Logic with Doxastic Modal Logics , 2002, Advances in Modal Logic.

[6]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[7]  Anand S. Rao,et al.  Modeling Rational Agents within a BDI-Architecture , 1997, KR.

[8]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[9]  Marcus Kracht,et al.  Simulation and Transfer Results in Modal Logic – A Survey , 1997, Stud Logica.

[10]  Michael Luck,et al.  Multi-Agent Systems and Applications , 2001, Lecture Notes in Computer Science.

[11]  Marcus Kracht,et al.  Properties of independently axiomatizable bimodal logics , 1991, Journal of Symbolic Logic.

[12]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[13]  Wiebe van der Hoek,et al.  Logical Foundations of Agent-Based Computing , 2001, EASSS.

[14]  Dominique Longin,et al.  Belief Dynamics in Cooperative Dialogues , 2000, J. Semant..

[15]  Frank Wolter The product of converse PDL and polymodal K , 2000, J. Log. Comput..

[16]  Jan A. Plaza,et al.  Logics of public communications , 2007, Synthese.

[17]  John-Jules Ch. Meyer,et al.  A Logical Approach to the Dynamics of Commitments , 1999, Artif. Intell..

[18]  Riccardo Pucella Review of Dynamic Logic (Foundations of Computing): authors of book: D. Harel, D. Kozen and J. Tiuryn , 2001, SIGA.

[19]  Renate A. Schmidt,et al.  ON AXIOMATIC PRODUCTS OF PDL AND S5: SUBSTITUTION, TESTS AND KNOWLEDGE ⁄ , 2002 .

[20]  Frank Wolter,et al.  Advanced modal logic , 1996 .

[21]  Dov M. Gabbay,et al.  Products of Modal Logics, Part 1 , 1998, Log. J. IGPL.

[22]  Hans Jürgen Ohlbach,et al.  SCAN - Elimination of Predicate Quantifiers , 1996, CADE.