Jeffreys' Priors for Survival Models with Censored data

Abstract When prior information on model parameters is weak or lacking, Bayesian statistical analyses are typically performed with so-called “default” priors. We consider the problem of constructing default priors for the parameters of survival models in the presence of censoring, using Jeffreys’ rule. We compare these Jeffreys priors to the “uncensored” Jeffreys priors, obtained without considering censored observations, for the parameters of the exponential and log-normal models. The comparison is based on the frequentist coverage of the posterior Bayes intervals obtained from these prior distributions.

[1]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[2]  J. A. Hartigan Note on the Confidence-Prior of Welch and Peers , 1966 .

[3]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[5]  C. D. Litton,et al.  Theory of Probability (3rd Edition) , 1984 .

[6]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[7]  Fulvio Spezzaferri,et al.  Methods for Default and Robust Bayesian Model Comparison: the Fractional Bayes Factor Approach , 1999 .

[8]  C. Robert The Bayesian choice : a decision-theoretic motivation , 1996 .

[9]  Nozer D. Singpurwalla,et al.  To survive or to fail: That is the question , 1994 .

[10]  Fulvio Spezzaferri,et al.  Alternative Bayes factors for model selection , 1997 .

[11]  L. Wasserman,et al.  Asymptotic inference for mixture models by using data‐dependent priors , 2000 .

[12]  Julia Mortera,et al.  Default Bayes Factors for Nonnested Hypothesis Testing , 1999 .

[13]  Joan Garfield,et al.  Assessment and Statistics Education: Current Challenges and Directions , 1999 .

[14]  R. Tibshirani Noninformative priors for one parameter of many , 1989 .

[15]  B. L. Welch,et al.  On Formulae for Confidence Points Based on Integrals of Weighted Likelihoods , 1963 .

[16]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[17]  Keying Ye,et al.  Reference priors when the stopping rule depends on the parameter of interest , 1993 .

[18]  D. Bartholomew,et al.  A comparison of some Bayesian and frequentist inferences. II. , 1965, Biometrika.

[19]  H. Jeffreys,et al.  Theory of probability , 1896 .