Analyses, development and applications of TLS algorithms in frequency domain system identification

This paper gives an overview of frequency domain total least squares (TLS) estimators for rational transfer function models of linear time-invariant multivariable systems. The statistical performance of the different approaches are analyzed through their equivalent cost functions. Both generalized and bootstrapped total least squares (GTLS and BTLS) methods require the exact knowledge of the noise covariance matrix. The paper also studies the asymptotic (the number of data points going to infinity) behavior of the GTLS and BTLS estimators when the exact noise covariance matrix is replaced by the sample noise covariance matrix obtained from a (small) number of independent data sets. Even if only two independent repeated observations are available, it is shown that the estimates are still strongly consistent without any increase in the asymptotic uncertainty.

[1]  Gerd Vandersteen,et al.  Frequency-domain system identification using non-parametric noise models estimated from a small number of data sets , 1997, Autom..

[2]  Yves Rolain,et al.  Best conditioned parametric identification of transfer function models in the frequency domain , 1995, IEEE Trans. Autom. Control..

[3]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[4]  W. Stout Almost sure convergence , 1974 .

[5]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[6]  Yves Rolain,et al.  Generating robust starting values for frequency-domain transfer function estimation , 1999, Autom..

[7]  B. Moor,et al.  Stepped sine system identification, errors-in-variables and the quotient singular value decomposition , 1990 .

[8]  J. Schoukens,et al.  Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..

[9]  Sabine Van Huffel,et al.  Formulation and solution of structured total least norm problems for parameter estimation , 1996, IEEE Trans. Signal Process..

[10]  H. Van der Auweraer,et al.  Multiple input orthogonal polynomial parameter estimation , 1987 .

[11]  Rik Pintelon,et al.  A weighted total least squares estimator for multivariable systems with nearly maximum likelihood properties , 1998, IEEE Trans. Instrum. Meas..

[12]  G. Forsythe Generation and Use of Orthogonal Polynomials for Data-Fitting with a Digital Computer , 1957 .

[13]  James Demmel,et al.  Computing the Generalized Singular Value Decomposition , 1993, SIAM J. Sci. Comput..

[14]  Thomas Kailath,et al.  Linear Systems , 1980 .

[15]  Hugo Van hamme,et al.  Application of the bootstrapped total least squares (BTLS) estimator in linear system identification , 1992 .

[16]  J. Cooley,et al.  The Fast Fourier Transform , 1975 .

[17]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[18]  J. Schoukens,et al.  Accurate Estimation of Multivariable Frequency Response Functions , 1996 .

[19]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[20]  Gerd Vandersteen,et al.  General framework for asymptotic properties of generalized weighted nonlinear least-squares estimators with deterministic and stochastic weighting , 1996, IEEE Trans. Autom. Control..

[21]  D. Schreurs,et al.  Parametric modelling of linear time invariant S-parameter devices in the Laplace domain , 1996, Quality Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science! Joint Conference - 1996: IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec.