The graph tessellation cover number: Chromatic bounds, efficient algorithms and hardness
暂无分享,去创建一个
Celina M. H. de Figueiredo | Luis Antonio Brasil Kowada | Renato Portugal | Franklin L. Marquezino | Luís Felipe I. Cunha | A. Abreu | Daniel Posner
[1] Celina M. H. de Figueiredo,et al. Author's Personal Copy Theoretical Computer Science Chromatic Index of Graphs with No Cycle with a Unique Chord , 2022 .
[2] Celina M. H. de Figueiredo,et al. The tessellation problem of quantum walks , 2017, LATIN.
[3] Yue Zhao,et al. Planar Graphs of Maximum Degree Seven are Class I , 2001, J. Comb. Theory B.
[4] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[5] Nick Roussopoulos,et al. A MAX{m, n} Algorithm for Determining the Graph H from Its Line Graph C , 1973, Inf. Process. Lett..
[6] Iwao Sato,et al. Partition-based discrete-time quantum walks , 2017, Quantum Inf. Process..
[7] Zvi Galil,et al. NP Completeness of Finding the Chromatic Index of Regular Graphs , 1983, J. Algorithms.
[8] J. Szwarcfiter. A Survey on Clique Graphs , 2003 .
[9] Diamantis P. Koreas. The NP-completeness of chromatic index in triangle free graphs with maximum vertex of degree 3 , 1997 .
[10] Jayme Luiz Szwarcfiter,et al. On clique-perfect and K-perfect graphs , 2006, Ars Comb..
[11] Ronald D. Dutton,et al. Vertex domination-critical graphs , 1988, Networks.
[12] Renato Portugal,et al. The staggered quantum walk model , 2015, Quantum Information Processing.
[13] Miguel A. Pizaña. The icosahedron is clique divergent , 2003, Discret. Math..
[14] Renato Portugal,et al. Staggered Quantum Walks on Graphs , 2016, 1603.02210.
[15] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[16] N. Mahadev,et al. Threshold graphs and related topics , 1995 .
[17] D. West. Introduction to Graph Theory , 1995 .
[18] Jeremy P. Spinrad,et al. Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.
[19] Leizhen Cai,et al. NP-completeness of edge-colouring some restricted graphs , 1991, Discret. Appl. Math..
[20] F. Protti,et al. Clique-inverse graphs of bipartite graphs , 2004 .
[21] Salvador Elías Venegas-Andraca,et al. Quantum walks: a comprehensive review , 2012, Quantum Information Processing.
[22] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[23] Dale Peterson,et al. Gridline graphs: a review in two dimensions and an extension to higher dimensions , 2003, Discret. Appl. Math..