Mucin Biopolymers Prevent Bacterial Aggregation by Retaining Cells in the Free-Swimming State

[1]  Oliver Lieleg,et al.  Mucin biopolymers as broad-spectrum antiviral agents. , 2012, Biomacromolecules.

[2]  R. Hancock,et al.  Mucin Promotes Rapid Surface Motility in Pseudomonas aeruginosa , 2012, mBio.

[3]  B. Johansson,et al.  Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin , 2012, Proceedings of the National Academy of Sciences.

[4]  K. Sauer,et al.  Sticky Situations: Key Components That Control Bacterial Surface Attachment , 2012, Journal of bacteriology.

[5]  Ravi S Kane,et al.  Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms , 2011, Advanced materials.

[6]  R. Carrier,et al.  Barrier properties of gastrointestinal mucus to nanoparticle transport. , 2010, Macromolecular bioscience.

[7]  A. Ellington,et al.  Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps” , 2010, mBio.

[8]  A. Velcich,et al.  The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria , 2008, Proceedings of the National Academy of Sciences.

[9]  Bruce A. Stanton,et al.  Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. , 2008, Pulmonary pharmacology & therapeutics.

[10]  N. Afdhal,et al.  Expression of cysteine‐rich C‐terminal domains of Pig Gastric Mucin in Pichia pastoris , 2007 .

[11]  M. Parsek,et al.  Analysis of Pseudomonas aeruginosa Conditional Psl Variants Reveals Roles for the Psl Polysaccharide in Adhesion and Maintaining Biofilm Structure Postattachment , 2006, Journal of bacteriology.

[12]  J. Hupp,et al.  Mucin–Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance , 2006, Molecular microbiology.

[13]  S. Erramilli,et al.  Viscoelastic properties and dynamics of porcine gastric mucin. , 2005, Biomacromolecules.

[14]  R. Kolter,et al.  Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix , 2004, Journal of bacteriology.

[15]  S. Molin,et al.  Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. , 2004, Journal of medical microbiology.

[16]  Matthew R. Parsek,et al.  Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Mattick,et al.  Phosphorylation of the Pseudomonas aeruginosa Response Regulator AlgR Is Essential for Type IV Fimbria-Mediated Twitching Motility , 2002, Journal of bacteriology.

[18]  D. Thornton,et al.  Heterogeneity of airways mucus: variations in the amounts and glycoforms of the major oligomeric mucins MUC5AC and MUC5B. , 2002, The Biochemical journal.

[19]  R. Donlan Biofilm formation: a clinically relevant microbiological process. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[20]  S. Molin,et al.  Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function , 2001, Journal of bacteriology.

[21]  Matthew R. Parsek,et al.  Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms , 2000, Nature.

[22]  S. Lory,et al.  The Pseudomonas aeruginosa Flagellar Cap Protein, FliD, Is Responsible for Mucin Adhesion , 1998, Infection and Immunity.

[23]  J. Yates,et al.  Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. , 1995, Analytical chemistry.

[24]  E. Mahenthiralingam,et al.  Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis , 1994, Infection and immunity.

[25]  A. Lee,et al.  Mucus colonization as a determinant of pathogenicity in intestinal infection by Campylobacter jejuni: a mouse cecal model , 1986, Infection and immunity.

[26]  R. Ramphal,et al.  Adherence of Pseudomonas aeruginosa to human tracheobronchial mucin , 1984, Infection and immunity.

[27]  H. Berg,et al.  Movement of microorganisms in viscous environments , 1979, Nature.

[28]  J. Voynow,et al.  Respiratory tract mucin genes and mucin glycoproteins in health and disease. , 2006, Physiological reviews.

[29]  Christine Josenhans,et al.  The role of motility as a virulence factor in bacteria. , 2002, International journal of medical microbiology : IJMM.

[30]  J Smid-Korbar,et al.  Comparative rheological investigation of crude gastric mucin and natural gastric mucus. , 1997, Biomaterials.