Enumeration of Complex Golay Pairs via Programmatic SAT

We provide a complete enumeration of all complex Golay pairs of length up to 25, verifying that complex Golay pairs do not exist in lengths 23 and 25 but do exist in length 24. This independently verifies work done by F. Fiedler in 2013 that confirms the 2002 conjecture of Craigen, Holzmann, and Kharaghani that complex Golay pairs of length 23 don't exist. Our enumeration method relies on the recently proposed SAT+CAS paradigm of combining computer algebra systems with SAT solvers to take advantage of the advances made in the fields of symbolic computation and satisfiability checking. The enumeration proceeds in two stages: First, we use a fine-tuned computer program and functionality from computer algebra systems to construct a list containing all sequences which could appear as the first sequence in a complex Golay pair (up to equivalence). Second, we use a programmatic SAT solver to construct all sequences (if any) that pair off with the sequences constructed in the first stage to form a complex Golay pair.

[1]  Krzysztof Czarnecki,et al.  An Empirical Study of Branching Heuristics Through the Lens of Global Learning Rate , 2017, SAT.

[2]  James A. Davis,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[3]  Wolf H. Holzmann,et al.  A computer search for complex Golay sequences , 1994, Australas. J Comb..

[4]  Matthew G. Parker,et al.  A multi-dimensional approach to the construction and enumeration of Golay complementary sequences , 2008, J. Comb. Theory, Ser. A.

[5]  Erika Ábrahám,et al.  Building Bridges between Symbolic Computation and Satisfiability Checking , 2015, ISSAC.

[6]  Srinivas Devadas,et al.  Lynx: A Programmatic SAT Solver for the RNA-Folding Problem , 2012, SAT.

[7]  Curtis Bright,et al.  Computational Methods for Combinatorial and Number Theoretic Problems , 2017 .

[8]  Krzysztof Czarnecki,et al.  Combining SAT Solvers with Computer Algebra Systems to Verify Combinatorial Conjectures , 2016, Journal of Automated Reasoning.

[9]  M. Golay Multi-slit spectrometry. , 1949, Journal of the Optical Society of America.

[10]  Peter A. Lewin,et al.  On the application of signal compression using Golay's codes sequences in ultrasound diagnostic , 2003 .

[11]  Robert Craigen,et al.  Complex Golay sequences: structure and applications , 2002, Discret. Math..

[12]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[13]  Jonathan Jedwab,et al.  Quaternary Golay sequence pairs I: even length , 2011, Des. Codes Cryptogr..

[14]  Matthew G. Parker,et al.  A Framework for the Construction ofGolay Sequences , 2008, IEEE Transactions on Information Theory.

[15]  J. Jedwab,et al.  A Framework for the Construction of Golay Sequences , 2008 .

[16]  F. Sischka,et al.  Real-time long range complementary correlation optical time domain reflectometer , 1989 .

[17]  Krzysztof Czarnecki,et al.  MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures , 2016, SC²@SYNASC.

[18]  Kenneth G. Paterson,et al.  Generalized Reed-Muller codes and power control in OFDM modulation , 1998, IEEE Trans. Inf. Theory.

[19]  Ilias S. Kotsireas,et al.  A SAT+CAS Method for Enumerating Williamson Matrices of Even Order , 2018, AAAI.

[20]  J. Urena,et al.  Train wheel detection without electronic equipment near the rail line , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[21]  M. Gribaudo,et al.  2002 , 2001, Cell and Tissue Research.

[22]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[23]  Frank Fiedler Small Golay sequences , 2013, Adv. Math. Commun..

[24]  Ying Li,et al.  More Golay sequences , 2005 .

[25]  Muhammad Iqbal,et al.  A Comparison of Pulse Compression Techniques for Ranging Applications , 2014, Computational Intelligence for Decision Support in Cyber-Physical Systems.

[26]  Ilias S. Kotsireas,et al.  Algorithms and Metaheuristics for Combinatorial Matrices , 2013 .

[27]  Daniel Kroening,et al.  SC2: Satisfiability Checking Meets Symbolic Computation - (Project Paper) , 2016, CICM.

[28]  Behruz Tayfeh-Rezaie,et al.  A Hadamard matrix of order 428 , 2005 .