Zirconian–niobian titanite and associated Zr-, Nb-, REE-rich accessory minerals: Products of hydrothermal overprint of leucocratic teschenites (Silesian Unit, Outer Western Carpathians, Czech Republic)

Sills of hydrothermally altered alkaline magmatic rock (teschenite) of Lower Cretaceous age at the Čerťák and Řepiště sites in the Silesian Unit (Flysch Belt of the Outer Western Carpathians, Czech Republic) host leucocratic dykes and nests which contain accessory minerals enriched in Zr, Nb and REE: Zr-, Nb-rich titanite, zircon, gittinsite, pyrochlore, monazite, REE-rich apatite, epidote, and vesuvianite. Titanite forms wedge-shaped crystals or irregular aggregates enclosed in the analcime groundmass or overgrowths on Zr-rich ferropargasite and taramite or Zr-rich aegirine–augite to aegirine. Titanite crystals show oscillatory or irregular patchy to sector zoning and contain up to 17.7 wt. % ZrO2 and 19.6 wt. % Nb2O5, and ≤1.1 wt. % REE2O3. High-field-strength elements (HFSE) are incorporated into the structure of the studied titanite predominantly by substitutions: (i) [6]Ti4+ ↔ [6]Zr4+; (ii) [6]Ti4+ + [6]Al3+ ↔ [6]Zr4+ + [6]Fe3+; and (iii) [6]2Ti4+ ↔ [6]Nb5+ + [6](Al, Fe)3+. Magmatic fractional crystallization, high-temperature hydrothermal autometasomatic overprint and low-temperature hydrothermal alterations resulted in the formation of the HFSE-rich mineral assemblages within the leucocratic teschenites. Autometamorphic processes caused by high-temperature hypersaline aqueous solutions (salinity ~50 wt. %, ~390–510 °C), which were released from the HFSE-enriched residual melt, played a major role in the crystallization of Zr-, Nb-, and REE-rich minerals. The mobilization of HFSE could have occurred either by their sequestration into a fluid phase exsolved from the crystallizing melt or by superimposed alteration processes. The distinctive positive Eu anomaly (EuCN/Eu* = 1.85) of leucocratic dykes infers possible mixing of Eu2+-bearing magmatic fluids with more oxidized fluids.

[1]  P. Uher,et al.  Titanite composition and SHRIMP U–Pb dating as indicators of post-magmatic tectono-thermal activity: Variscan I-type tonalites to granodiorites, the Western Carpathians , 2019, Geologica Carpathica.

[2]  R. Anczkiewicz,et al.  Geochronology and Sr–Nd–Hf isotope constraints on the petrogenesis of teschenites from the type-locality in the Outer Western Carpathians , 2019, Geologica Carpathica.

[3]  D. Matýsek,et al.  The Žermanice sill: new insights into the mineralogy, petrology, age, and origin of the teschenite association rocks in the Western Carpathians, Czech Republic , 2018, International Journal of Earth Sciences.

[4]  P. Uher,et al.  Fluorcaphite from hydrothermally altered teschenite at Tichá, Outer Western Carpathians, Czech Republic: compositional variations and origin , 2017, Mineralogical Magazine.

[5]  M. Marks,et al.  A global review on agpaitic rocks , 2017 .

[6]  C. McFarlane,et al.  Textures, trace element compositions, and U–Pb ages of titanite from the Mangling granitoid pluton, East Qinling Orogen: Implications for magma mixing and destruction of the North China Craton , 2017 .

[7]  G. Rossman,et al.  Żabińskiite, ideally Ca(Al0.5Ta0.5)(SiO4)O, a new mineral of the titanite group from the Piława Górna pegmatite, the Góry Sowie Block, southwestern Poland , 2017, Mineralogical Magazine.

[8]  Frank,et al.  ideally Ca ( Al 0 . 5 Ta 0 . 5 ) ( SiO 4 ) O , a new mineral of the titanite group from the Pi ł awa Górna pegmatite , the Góry Sowie Block , southwestern Poland , 2017 .

[9]  D. Matýsek,et al.  Occurrences of Slawsonite in rocks of the teschenite association in the Podbeskydí Piedmont area (Czech Republic) and their petrological significance , 2016 .

[10]  Yue-heng Yang,et al.  Titanite-scale insights into multi-stage magma mixing in Early Cretaceous of NW Jiaodong terrane, North China Craton , 2016 .

[11]  T. Nielsen,et al.  Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems , 2016, Mineralogical Magazine.

[12]  Kristýna Schuchová Petrografical variability of teschenites from Bludovice near Nový Jičín , 2016 .

[13]  A. Williams-Jones,et al.  The Origin of Niobium and Tantalum Mineralization in the Nechalacho REE Deposit, NWT, Canada , 2015 .

[14]  N. Evans,et al.  In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, Western Junggar, NW China , 2015 .

[15]  D. Buriánek,et al.  Carbonate inclusions in Lower Cretaceous picrites from the Hončova hůrka Hill (Czech Republic, Outer Western Carpathians): Evidence for primary magmatic carbonates? , 2015, International Journal of Earth Sciences.

[16]  K. Szopa,et al.  LA-ICP-MS U-Pb apatite dating of Lower Cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland) , 2014 .

[17]  Z. Dolníček,et al.  Diagenetic source of fluids causing the hydrothermal alteration of teschenites in the Silesian Unit, Outer Western Carpathians, Czech Republic: Petroleum-bearing vein mineralization from the Stříbrník site , 2012 .

[18]  F. Moynier,et al.  Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes , 2012 .

[19]  F. Hawthorne,et al.  Natrotitanite, ideally (Na0.5Y0.5)Ti(SiO4)O, a new mineral from the Verkhnee Espe deposit, Akjailyautas mountains, Eastern Kazakhstan district, Kazakhstan: description and crystal structure , 2012, Mineralogical Magazine.

[20]  S. Salvi,et al.  An experimental study of the solubility of baddeleyite (ZrO2) in fluoride-bearing solutions at elevated temperature , 2011 .

[21]  T. Dempster,et al.  Deciphering Magma-Mixing Processes Using Zoned Titanite from the Ross of Mull Granite, Scotland , 2011 .

[22]  Z. Dolníček,et al.  Post-magmatic hydrothermal mineralization associated with Cretaceous picrite (Outer Western Carpathians, Czech Republic): interaction between host rock and externally derived fluid , 2010 .

[23]  M. Novák,et al.  INTERNAL STRUCTURE AND MINERALOGY OF A ZONED ANORTHITE- AND GROSSULAR-BEARING LEUCOTONALITIC PEGMATITE IN SERPENTINIZED LHERZOLITE AT RUDA NAD MORAVOU, STARÉ MĚSTO UNIT, CZECH REPUBLIC , 2010 .

[24]  A. Christy,et al.  THE PYROCHLORE SUPERGROUP OF MINERALS: NOMENCLATURE , 2010 .

[25]  D. Plašienka,et al.  Evolution and structure of the Western Carpathians : an overview , 2010 .

[26]  P. Uher,et al.  Mineralogical and geochemical evidence for multi-stage origin of mineral veins hosted by teschenites at Ticha ´ , Outer Western Carpathians, Czech Republic , 2010 .

[27]  A. Williams-Jones,et al.  The stability of Zr in F-bearing hydrothermal solutions , 2009 .

[28]  J. Lorand,et al.  Zr-rich accessory minerals (titanite, perrierite, zirconolite, baddeleyite) record strong oxidation associated with magma mixing in the south Peruvian potassic province , 2008 .

[29]  E. Watson,et al.  A thermobarometer for sphene (titanite) , 2008 .

[30]  S. Salvi,et al.  Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada , 2006 .

[31]  R. Mitchell,et al.  Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa , 2006 .

[32]  S. Klemme,et al.  Rare earth element partitioning between titanite and silicate melts: Henry's law revisited , 2006 .

[33]  D. Cherniak Zr diffusion in titanite , 2006 .

[34]  Vladimir Bermanec,et al.  Recommended nomenclature of epidote-group minerals , 2006 .

[35]  Martin P Smith,et al.  Common lead-corrected laser ablation ICP-MS U-Pb systematics and geochronology of titanite , 2006 .

[36]  U. Hålenius,et al.  Nb-, Zr- and LREE-rich titanite from the Alnö alkaline complex: Crystal chemistry and its importance as a petrogenetic indicator , 2005 .

[37]  W. Seifert REE-, Zr-, and Th-rich titanite and associated accessory minerals from a kersantite in the Frankenwald, Germany , 2005 .

[38]  R. Mitchell,et al.  COMPOSITION AND PARAGENESIS OF Na-, Nb- AND Zr-BEARING TITANITE FROM KHIBINA, RUSSIA, AND CRYSTAL-STRUCTURE DATA FOR SYNTHETIC ANALOGUES , 2005 .

[39]  G. Markl,et al.  REE systematics in hydrothermal fluorite , 2005 .

[40]  Rucheng Wang,et al.  Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems , 2005 .

[41]  A. Chakhmouradian Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia , 2004 .

[42]  R. Mitchell,et al.  EXTREME COMPOSITIONAL VARIATION OF PYROCHLORE-GROUP MINERALS AT THE OKA CARBONATITE COMPLEX, QUEBEC: EVIDENCE OF MAGMA MIXING? , 2004 .

[43]  W. Seifert,et al.  Accessory titanite: an important carrier of zirconium in lamprophyres , 2003 .

[44]  P. Manetti,et al.  Geochemistry and petrogenesis of Early Cretaceous alkaline igneous rocks in Central Europe: Implications for a long-lived EAR-type mantle component beneath Europe , 2003 .

[45]  E. Njonfang,et al.  Clinopyroxene from some felsic alkaline rocks of the Cameroon Line, central Africa: petrological implications , 2003 .

[46]  S. Klemme,et al.  Effect of melt composition on the partitioning of trace elements between titanite and silicate melt , 2003 .

[47]  A. Chakhmouradian,et al.  Titanite in carbonatitic rocks: Genetic dualism and geochemical significance , 2003 .

[48]  H. Keppler,et al.  Melt composition control of Zr/Hf fractionation in magmatic processes , 2002 .

[49]  S. Eggins,et al.  The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts , 2002 .

[50]  T. Monecke,et al.  Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits , 2002 .

[51]  I. Villa,et al.  40Ar/39Ar dating of alkaline lamprophyres from the Polish Western Carpathians. , 2002 .

[52]  S. Salvi,et al.  Hydrothermal Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco) , 2000 .

[53]  A. Chakhmouradian,et al.  The mineralogy of a unique baratovite- and miserite-bearing quartz-albite-aegirine rock from the Dara-i-Pioz Complex, northern Tajikistan , 1999 .

[54]  A. Chakhmouradian,et al.  Primary, agpaitic and deuteric stages in the evolution of accessory Sr, REE, Ba and Nb-mineralization in nepheline-syenite pegmatites at Pegmatite Peak, Bearpaw Mts, Montana , 1999 .

[55]  F. Bellatreccia,et al.  Zr- and LREE-rich titanite from Tre Croci, Vico Volcanic complex (Latium, Italy) , 1999, Mineralogical Magazine.

[56]  J. Owen,et al.  Cretaceous alkaline lamprophyres from northeastern Czech Republic: geochemistry and petrogenesis , 1998 .

[57]  J. Kapusta,et al.  The X-ray powder diffraction profile analysis of analcimes from the teschenitic sills of the Outer Carpathians, Poland , 1997 .

[58]  A. Kozłowski,et al.  Fluid inclusions in hydrothermal analcimes from the rocks of the Cieszyn magma province (Poland) , 1997 .

[59]  S. Salvi,et al.  The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada , 1996 .

[60]  David C. Smith,et al.  Sb-rich titanite in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: petrography and crystal-chemistry , 1995, Mineralogical Magazine.

[61]  J. Dawson,et al.  Petrology and Mineral Chemistry of Plutonic Igneous Xenoliths from the Carbonatite Volcano, Oldoinyo Lengai, Tanzania , 1995 .

[62]  M. Novák,et al.  The Al (Nb, Ta) Ti(in−2) substitution in titanite: the emergence of a new species? , 1995 .

[63]  G. Lumpkin,et al.  Natural occurrence and stability of pyrochlore in carbonatites, related hydrothermal systems, and weathering environments , 1995 .

[64]  E. Hoffer,et al.  Trace element partitioning between titanite, diopside and melt at 1 atm - an experimental study of the system anorthite - diopside - titanite , 1994 .

[65]  J. G. Price,et al.  The mobility of zirconium and other "immobile" elements during hydrothermal alteration , 1993 .

[66]  H. Keppler Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks , 1993 .

[67]  A. Jacobson,et al.  Hydrothermal synthesis of calcium - niobium and tantalum oxides with the pyrochlore structure , 1992 .

[68]  R. Gieré Compositional variation of metasomatic titanite from Adamello (Italy) , 1992 .

[69]  N. Eby,et al.  Niobian Titanite and Eudialyte from the Ilomba Nepheline Syenite Complex, North Malawi , 1992 .

[70]  R. Gieré Hydrothermal mobility of Ti, Zr and REE: examples from the Bergell and Adamello contact aureoles (Italy) , 1990 .

[71]  J. Crnički A Contribution to the Research on Rare Earth Elements in Sedimentary Rocks , 1989 .

[72]  N. Pearce Zirconium-bearing amphiboles from the Igaliko Dyke Swarm, South Greenland , 1989, Mineralogical Magazine.

[73]  P. Černý,et al.  Mineralogy of Niobium and Tantalum: Crystal Chemical Relationships, Paragenetic Aspects and Their Economic Implications , 1989 .

[74]  Scott M. McLennan,et al.  Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes , 1989 .

[75]  S. Lanka,et al.  Rare earth and uranium minerals present as daughter crystals in fluid inclusions, Mary Kathleen U-REE skarn, Queensland, Australia , 1987, Mineralogical Magazine.

[76]  A. Rheingold,et al.  Crystal structure of a REE-bearing vesuvianite from San Benito County, California , 1987 .

[77]  N. Pearson,et al.  Rare-earth element partitioning between sphene and coexisting silicate liquid at high pressure and temperature , 1986 .

[78]  J. Gamble Petrology and geochemistry of differentiated teschenite intrusions from the Hunter Valley, New South Wales, Australia , 1984 .

[79]  B. Giannetti,et al.  The white trachytic tuff of Roccamonfina Volcano (Roman Region, Italy) , 1983 .

[80]  A. C. Roberts,et al.  Gittinsite, a new calcium zirconium silicate from the Kipawa agpaitic syenite complex, Quebec , 1980 .

[81]  E. Watson,et al.  Zircon saturation in felsic liquids: Experimental results and applications to trace element geochemistry , 1979 .

[82]  S. Oswald,et al.  New data on cerian vesuvianite from San Benito County, California , 1979 .

[83]  A. Clark A tantalum-rich variety of sphene , 1974, Mineralogical Magazine.

[84]  A. Mahmood Petrology of the teschenitic rock series from the type area of Cieszyn (Teschen) in the Polish Carpathians , 1973 .

[85]  Alan L. Smith Sphene, perovskite and coexisting Fe-Ti oxide minerals , 1970 .

[86]  Z. Lerman,et al.  Genetic Types of Rare Element Deposits , 1968 .

[87]  J. Murdoch,et al.  A cerian vesuvianite from California , 1966 .

[88]  J. Wilkinson The geochemistry of a differentiated teschenite sill near Gunnedah, New South Wales , 1959 .

[89]  R. O. Scott On the chemistry of the mineral titanite : Sahama, Th.G.: C. r. Soc. géol. Finlande No. 19; Bull. Comm. géol. Finlande No. 138, 88–120 (1946) , 1948 .