Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone

[1]  Karl Deisseroth,et al.  Excitation-Neurogenesis Coupling in Adult Neural Stem/Progenitor Cells , 2004, Neuron.

[2]  San-Nan Yang,et al.  Neural progenitor cells resist excitatory amino acid‐induced neurotoxicity , 2003, Journal of neuroscience research.

[3]  S. Levison,et al.  Damage to the Choroid Plexus, Ependyma and Subependyma as a Consequence of Perinatal Hypoxia/Ischemia , 2003, Developmental Neuroscience.

[4]  J. Barks,et al.  Pathogenesis of hypoxic-ischemic cerebral injury in the term infant: current concepts. , 2002, Clinics in perinatology.

[5]  J. Goldman,et al.  Subpallial Dlx2-Expressing Cells Give Rise to Astrocytes and Oligodendrocytes in the Cerebral Cortex and White Matter , 2002, The Journal of Neuroscience.

[6]  D. Holtzman,et al.  Selective Vulnerability of Late Oligodendrocyte Progenitors to Hypoxia–Ischemia , 2002, The Journal of Neuroscience.

[7]  Chun-Jung Chen,et al.  Tyrosine kinase signaling involves in glutamate-induced astrocyte proliferation , 2001, Neuroreport.

[8]  S. Levison,et al.  Perinatal Hypoxia-Ischemia Induces Apoptotic and Excitotoxic Death of Periventricular White Matter Oligodendrocyte Progenitors , 2001, Developmental Neuroscience.

[9]  C. Y. Brazel,et al.  The FLT3 Tyrosine Kinase Receptor Inhibits Neural Stem/Progenitor Cell Proliferation and Collaborates with NGF to Promote Neuronal Survival , 2001, Molecular and Cellular Neuroscience.

[10]  Susan J. Vannucci,et al.  Hypoxia/Ischemia Depletes the Rat Perinatal Subventricular Zone of Oligodendrocyte Progenitors and Neural Stem Cells , 2001, Developmental Neuroscience.

[11]  Pamela L. Follett,et al.  NBQX Attenuates Excitotoxic Injury in Developing White Matter , 2000, The Journal of Neuroscience.

[12]  P. Rakic,et al.  Differential Modulation of Proliferation in the Neocortical Ventricular and Subventricular Zones , 2000, The Journal of Neuroscience.

[13]  C. Y. Brazel,et al.  Selective Apoptosis Within the Rat Subependymal Zone: A Plausible Mechanism for Determining Which Lineages Develop from Neural Stem Cells , 2000, Developmental Neuroscience.

[14]  D. Pleasure,et al.  Non-N-methyl-d-aspartate glutamate receptors mediate oxygen–glucose deprivation-induced oligodendroglial injury , 2000, Brain Research.

[15]  T. Möller,et al.  Rapid Ischemic Cell Death in Immature Oligodendrocytes: A Fatal Glutamate Release Feedback Loop , 2000, The Journal of Neuroscience.

[16]  R. Vannucci,et al.  CSF glutamate during hypoxia-ischemia in the immature rat. , 1999, Brain research. Developmental brain research.

[17]  Daniel A. Lim,et al.  Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain , 1999, Cell.

[18]  D. van der Kooy,et al.  Adult Mammalian Forebrain Ependymal and Subependymal Cells Demonstrate Proliferative Potential, but only Subependymal Cells Have Neural Stem Cell Characteristics , 1999, The Journal of Neuroscience.

[19]  J. Barker,et al.  Glutamate Acting at NMDA Receptors Stimulates Embryonic Cortical Neuronal Migration , 1999, The Journal of Neuroscience.

[20]  Jonas Frisén,et al.  Identification of a Neural Stem Cell in the Adult Mammalian Central Nervous System , 1999, Cell.

[21]  J. Mcdonald,et al.  Multiple classes of the oligodendrocyte lineage are highly vulnerable to excitotoxicity , 1998, Neuroreport.

[22]  S. Scherer,et al.  Expression and regulation of kainate and AMPA receptors in the rat neural tube , 1998, Journal of neuroscience research.

[23]  F. Spinella,et al.  Opposite influence of the metabotropic glutamate receptor subtypes mGlu3 and ‐5 on astrocyte proliferation in culture , 1997, Glia.

[24]  F. Gage,et al.  Regulation of voltage- and ligand-gated currents in rat hippocampal progenitor cells in vitro. , 1997, Journal of neurobiology.

[25]  A. Kriegstein,et al.  GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis , 1995, Neuron.

[26]  P. Rakić,et al.  Neurotransmitter receptors in the proliferative zones of the developing primate occipital lobe , 1995, The Journal of comparative neurology.

[27]  P. Andiné,et al.  Hypoxia-ischemia in the neonatal rat brain: histopathology after post-treatment with NMDA and non-NMDA receptor antagonists. , 1994, Biology of the neonate.

[28]  R. Busto,et al.  Changes in Amino Acid Neurotransmitters and Cerebral Blood Flow in the Ischemic Penumbral Region following Middle Cerebral Artery Occlusion in the Rat: Correlation with Histopathology , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[29]  P. Andiné,et al.  Intra- and extracellular changes of amino acids in the cerebral cortex of the neonatal rat during hypoxic-ischemia. , 1991, Brain research. Developmental brain research.

[30]  H. Kettenmann,et al.  Physiological Properties of Oligodendrocytes during Development a , 1991, Annals of the New York Academy of Sciences.

[31]  D. Prince,et al.  Postnatal maturation of the GABAergic system in rat neocortex. , 1991, Journal of neurophysiology.

[32]  P. Andiné,et al.  The excitatory amino acid antagonist kynurenic acid administered after hypoxic-ischemia in neonatal rats offers neuroprotection , 1988, Neuroscience Letters.

[33]  P. Schwartzkroin,et al.  Actions of GABA in developing rabbit hippocampus: an in vitro study , 1983, Neuroscience Letters.