Window function influence on phase error in phase-shifting algorithms.

We present five different eight-point phase-shifting algorithms, each with a different window function. The window function plays a crucial role in determining the phase (wavefront) because it significantly influences phase error. We begin with a simple eight-point algorithm that uses a rectangular window function. We then present alternative algorithms with triangular and bell-shaped window functions that were derived from a new error-reducing multiple-averaging technique. The algorithms with simple (rectangular and triangular) window functions show a large phase error, whereas the algorithms with bell-shaped window functions are considerably less sensitive to different phase-error sources. We demonstrate that the shape of the window function significantly influences phase error.

[1]  Y. Surrel Phase stepping: a new self-calibrating algorithm. , 1993, Applied optics.

[2]  Malgorzata Kujawinska,et al.  Spatial and temporal phase-measurement techniques: a comparison of major error sources in one dimension , 1993, Optics & Photonics.

[3]  D. J. Brangaccio,et al.  Digital wavefront measuring interferometer for testing optical surfaces and lenses. , 1974, Applied optics.

[4]  K Creath,et al.  Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry. , 1995, Applied optics.

[5]  J. Schwider,et al.  New compensating four-phase algorithm for phase-shift interferometry , 1993 .

[6]  J. Schwider,et al.  Digital wave-front measuring interferometry: some systematic error sources. , 1983, Applied optics.

[7]  Kieran G. Larkin,et al.  Design and assessment of symmetrical phase-shifting algorithms , 1992 .

[8]  Chris L. Koliopoulos,et al.  Fourier description of digital phase-measuring interferometry , 1990 .

[9]  Peter J. de Groot,et al.  Long-wavelength laser diode interferometer for surface flatness measurement , 1994 .

[10]  Peter de Groot,et al.  Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window. , 1995, Applied optics.

[11]  Kenneth H. Womack,et al.  Interferometric Phase Measurement Using Spatial Synchronous Detection , 1983 .

[12]  P. Groot,et al.  Phase-shift calibration errors in interferometers with spherical Fizeau cavities. , 1995, Applied optics.

[13]  J. Greivenkamp,et al.  Phase Shifting Interferometers , 1992 .

[14]  K. Creath Temporal Phase Measurement Methods , 1993 .

[15]  K Creath,et al.  Phase-shifting errors in interferometric tests with high-numerical-aperture reference surfaces. , 1994, Applied optics.

[16]  K. Hibino,et al.  Phase shifting for nonsinusoidal waveforms with phase-shift errors , 1995 .

[17]  C Joenathan,et al.  Phase-measuring interferometry: new methods and error analysis. , 1994, Applied optics.

[18]  Joanna Schmit,et al.  N-point spatial phase-measurement techniques for non-destructive testing , 1996 .

[19]  Malgorzata Kujawinska,et al.  High accuracy Fourier transform fringe pattern analysis , 1991 .

[20]  C. J. Morgan Least-squares estimation in phase-measurement interferometry. , 1982, Optics letters.

[21]  T. Eiju,et al.  Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. , 1987, Applied optics.

[22]  B. Oreb,et al.  Design and assessment of symmetrical phase-shifting algorithms , 1992 .

[23]  Robert W. Ramirez,et al.  The Fft, Fundamentals and Concepts , 1984 .

[24]  John E. Greivenkamp,et al.  Generalized Data Reduction For Heterodyne Interferometry , 1984 .

[25]  R. Moore,et al.  Direct measurement of phase in a spherical-wave Fizeau interferometer. , 1980, Applied optics.

[26]  J. Schwider,et al.  IV Advanced Evaluation Techniques in Interferometry , 1990 .

[27]  Mitsuo Takeda,et al.  Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: An overview , 1990 .