Building machines with DNA molecules

[1]  Yun Li From classical to quantum , 2020, Nature Physics.

[2]  Hendrik Dietz,et al.  Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds , 2019, ACS nano.

[3]  David Baker,et al.  What has de novo protein design taught us about protein folding and biophysics? , 2019, Protein science : a publication of the Protein Society.

[4]  Michael Börsch,et al.  Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases , 2019, Molecules.

[5]  Francesco Ricci,et al.  DNA-Based Scaffolds for Sensing Applications. , 2018, Analytical chemistry.

[6]  R. Astumian Trajectory and Cycle-Based Thermodynamics and Kinetics of Molecular Machines: The Importance of Microscopic Reversibility. , 2018, Accounts of chemical research.

[7]  Hendrik Dietz,et al.  Sequence-programmable covalent bonding of designed DNA assemblies , 2018, Science Advances.

[8]  U. Keyser,et al.  A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes , 2018, Nature Communications.

[9]  Wen Jiang,et al.  In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs , 2018, Nature Communications.

[10]  Jeremy J. Baumberg,et al.  Thermo‐Responsive Actuation of a DNA Origami Flexor , 2018 .

[11]  Donald E Ingber,et al.  Modulation of the Cellular Uptake of DNA Origami through Control over Mass and Shape. , 2018, Nano letters.

[12]  Chenxiang Lin,et al.  Vesicle Tubulation with Self-Assembling DNA Nanosprings. , 2018, Angewandte Chemie.

[13]  Julián Valero,et al.  A bio-hybrid DNA rotor/stator nanoengine that moves along predefined tracks , 2018, Nature Nanotechnology.

[14]  Scott G Harroun,et al.  Programmable DNA switches and their applications. , 2018, Nanoscale.

[15]  Hyunung Lee,et al.  A Reconfigurable DNA Accordion Rack. , 2018, Angewandte Chemie.

[16]  C. Dekker,et al.  DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex , 2018, Nature Communications.

[17]  P. Schwille,et al.  Membrane sculpting by curved DNA origami scaffolds , 2018, Nature Communications.

[18]  Yonggang Ke,et al.  Visualization of the Cellular Uptake and Trafficking of DNA Origami Nanostructures in Cancer Cells. , 2018, Journal of the American Chemical Society.

[19]  M. Baroncini,et al.  Making and Operating Molecular Machines: A Multidisciplinary Challenge , 2018, ChemistryOpen.

[20]  Tim Liedl,et al.  DNA-Assembled Advanced Plasmonic Architectures. , 2018, Chemical reviews.

[21]  David Baddeley,et al.  A Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement. , 2018, ACS nano.

[22]  Friedrich C Simmel,et al.  A self-assembled nanoscale robotic arm controlled by electric fields , 2018, Science.

[23]  T. Weil,et al.  Fabrication of Defined Polydopamine Nanostructures by DNA Origami‐Templated Polymerization , 2018, Angewandte Chemie.

[24]  C. Wälti,et al.  Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search. , 2017, ACS nano.

[25]  David A Rusling,et al.  Triplex-forming oligonucleotides: a third strand for DNA nanotechnology , 2017, Nucleic acids research.

[26]  Jocelyn Y. Kishi,et al.  Programmable autonomous synthesis of single-stranded DNA , 2017, Nature chemistry.

[27]  Philipp C Nickels,et al.  3D DNA Origami Crystals , 2017, Advanced materials.

[28]  K. Jechoutek From Static to Dynamic , 2018 .

[29]  Hao Yan,et al.  Single-stranded DNA and RNA origami , 2017, Science.

[30]  Hendrik Dietz,et al.  Gigadalton-scale shape-programmable DNA assemblies , 2017, Nature.

[31]  Lulu Qian,et al.  Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns , 2017, Nature.

[32]  Hendrik Dietz,et al.  Biotechnological mass production of DNA origami , 2017, Nature.

[33]  Kevin D. Dorfman,et al.  Sequence-Dependent Persistence Length of Long DNA. , 2017, Physical review letters.

[34]  Casey Grun,et al.  Programmable self-assembly of three-dimensional nanostructures from 104 unique components , 2017, Nature.

[35]  Carlos E. Castro,et al.  Engineering Cell Surface Function with DNA Origami , 2017, Advanced materials.

[36]  Hendrik Dietz,et al.  How We Make DNA Origami , 2017, Chembiochem : a European journal of chemical biology.

[37]  Lu Zhang,et al.  Massively parallel de novo protein design for targeted therapeutics , 2017, Nature.

[38]  Na Liu,et al.  DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic. , 2017, Accounts of chemical research.

[39]  J. F. Stoddart,et al.  Mastering the non-equilibrium assembly and operation of molecular machines. , 2017, Chemical Society reviews.

[40]  Wei Li,et al.  A cargo-sorting DNA robot , 2017, Science.

[41]  Jean-Pierre Sauvage,et al.  From Chemical Topology to Molecular Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[42]  J. Fraser Stoddart,et al.  Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[43]  N. Seeman,et al.  Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals. , 2017, Journal of the American Chemical Society.

[44]  Jie Song,et al.  Reconfiguration of DNA molecular arrays driven by information relay , 2017, Science.

[45]  Hélder A. Santos,et al.  Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility , 2017, Advanced healthcare materials.

[46]  Zhao Zhang,et al.  Placing and shaping liposomes with reconfigurable DNA nanocages. , 2017, Nature chemistry.

[47]  Melike Lakadamyali,et al.  DNA Origami offers a versatile method for quantifying protein copy-number in super-resolution , 2017, Nature Methods.

[48]  David J. Mooney,et al.  Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation , 2017, Nature Communications.

[49]  P. Paukstelis,et al.  Core–Shell and Layer‐by‐Layer Assembly of 3D DNA Crystals , 2017, Advanced materials.

[50]  K. Gothelf,et al.  Site-Selective Conjugation of Native Proteins with DNA. , 2017, Accounts of chemical research.

[51]  David A Leigh,et al.  Artificial molecular motors. , 2017, Chemical Society reviews.

[52]  Michael Matthies,et al.  Block Copolymer Micellization as a Protection Strategy for DNA Origami. , 2017, Angewandte Chemie.

[53]  H. Noji,et al.  Catalytic robustness and torque generation of the F1-ATPase , 2017, Biophysical Reviews.

[54]  Hendrik Dietz,et al.  Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes , 2017, Science.

[55]  Tomoko Emura,et al.  A Photoregulated DNA-Based Rotary System and Direct Observation of Its Rotational Movement. , 2017, Chemistry.

[56]  R. Cross,et al.  Molecular machines , 2017, Biophysical Reviews.

[57]  H. Hess,et al.  Proximity does not contribute to activity enhancement in the glucose oxidase–horseradish peroxidase cascade , 2016, Nature Communications.

[58]  R. Astumian Optical vs. chemical driving for molecular machines. , 2016, Faraday discussions.

[59]  Matthew A Watson,et al.  Man-made molecular machines: membrane bound. , 2016, Chemical Society reviews.

[60]  Hao Yan,et al.  Assembly of multienzyme complexes on DNA nanostructures , 2016, Nature Protocols.

[61]  H. Dietz,et al.  Uncovering the forces between nucleosomes using DNA origami , 2016, Science Advances.

[62]  Tim Liedl,et al.  Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp , 2016, Science.

[63]  Friedrich C Simmel,et al.  Molecular transport through large-diameter DNA nanopores , 2016, Nature Communications.

[64]  D. Baker,et al.  The coming of age of de novo protein design , 2016, Nature.

[65]  M. Zacharias,et al.  Single-molecule dissection of stacking forces in DNA , 2016, Science.

[66]  H. Dietz,et al.  Impact of Heterogeneity and Lattice Bond Strength on DNA Triangle Crystal Growth. , 2016, ACS nano.

[67]  Friedrich C Simmel,et al.  Long-range movement of large mechanically interlocked DNA nanostructures , 2016, Nature Communications.

[68]  Hao Yan,et al.  Construction and Structure Determination of a Three-Dimensional DNA Crystal. , 2016, Journal of the American Chemical Society.

[69]  S. Silverman,et al.  Catalytic DNA: Scope, Applications, and Biochemistry of Deoxyribozymes. , 2016, Trends in biochemical sciences.

[70]  Hao Yan,et al.  Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold. , 2016, Angewandte Chemie.

[71]  A. Warshel,et al.  The Physics and Physical Chemistry of Molecular Machines. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[72]  Chuyang Cheng,et al.  Wholly Synthetic Molecular Machines. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[73]  P. Paukstelis,et al.  Enhancing DNA Crystal Durability through Chemical Crosslinking , 2016, Chembiochem : a European journal of chemical biology.

[74]  R. Cross,et al.  Review: Mechanochemistry of the kinesin‐1 ATPase , 2016, Biopolymers.

[75]  Peng Yin,et al.  Optical visualisation of individual biomolecules in densely packed clusters , 2016 .

[76]  W. Chiu,et al.  Designer nanoscale DNA assemblies programmed from the top down , 2016, Science.

[77]  Peng Yin,et al.  Genetic encoding of DNA nanostructures and their self-assembly in living bacteria , 2016, Nature Communications.

[78]  Johannes B. Woehrstein,et al.  Quantitative Super-Resolution Imaging with qPAINT using Transient Binding Analysis , 2016, Nature Methods.

[79]  Jing Wang,et al.  Self-assembly of size-controlled liposomes on DNA nanotemplates , 2016, Nature chemistry.

[80]  Jejoong Yoo,et al.  De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation , 2016, Nucleic acids research.

[81]  Hao Yan,et al.  Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion , 2016, Nature Communications.

[82]  Na Liu,et al.  A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function , 2016, Nature Communications.

[83]  Shachi Gosavi,et al.  Using the folding landscapes of proteins to understand protein function. , 2016, Current opinion in structural biology.

[84]  Hendrik Dietz,et al.  Nanoscale rotary apparatus formed from tight-fitting 3D DNA components , 2016, Science Advances.

[85]  P. Fischer,et al.  Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles , 2016, Nano letters.

[86]  I. Goychuk Molecular machines operating on the nanoscale: from classical to quantum , 2015, Beilstein journal of nanotechnology.

[87]  R. Cross Mechanochemistry of the Kinesin-1 ATPase , 2016 .

[88]  H. Dietz,et al.  Placing molecules with Bohr radius resolution using DNA origami. , 2016, Nature nanotechnology.

[89]  William M. Shih,et al.  Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries , 2015, Nature Communications.

[90]  Marcel Hollenstein,et al.  DNA Catalysis: The Chemical Repertoire of DNAzymes , 2015, Molecules.

[91]  D. Baker,et al.  Control over overall shape and size in de novo designed proteins , 2015, Proceedings of the National Academy of Sciences.

[92]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[93]  Hao Yan,et al.  Complex wireframe DNA origami nanostructures with multi-arm junction vertices. , 2015, Nature nanotechnology.

[94]  Arun Richard Chandrasekaran,et al.  Post-Assembly Stabilization of Rationally Designed DNA Crystals. , 2015, Angewandte Chemie.

[95]  Jing Pan,et al.  Recent progress on DNA based walkers. , 2015, Current opinion in biotechnology.

[96]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[97]  Marcel Knossow,et al.  Kinesin, 30 years later: Recent insights from structural studies , 2015, Protein science : a publication of the Protein Society.

[98]  Hendrik Dietz,et al.  Efficient Production of Single-Stranded Phage DNA as Scaffolds for DNA Origami , 2015, Nano letters.

[99]  Björn Högberg,et al.  Purification of functionalized DNA origami nanostructures. , 2015, ACS nano.

[100]  B. Colasson,et al.  Electrochemically and Chemically Induced Redox Processes in Molecular Machines , 2015 .

[101]  Flavio Romano,et al.  Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. , 2015, The Journal of chemical physics.

[102]  A. Yildiz,et al.  Kinesin's front head is gated by the backward orientation of its neck linker. , 2015, Cell reports.

[103]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[104]  J. Onuchic,et al.  What protein folding teaches us about biological function and molecular machines. , 2015, Current opinion in structural biology.

[105]  Yan Liu,et al.  DNA nanotechnology for nanophotonic applications. , 2015, Nanoscale.

[106]  Itamar Willner,et al.  DNA switches: from principles to applications. , 2015, Angewandte Chemie.

[107]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[108]  Nathan Nelson,et al.  ATP synthase. , 2015, Annual review of biochemistry.

[109]  T. G. Martin,et al.  Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions** , 2014, Angewandte Chemie.

[110]  Cody W. Geary,et al.  A single-stranded architecture for cotranscriptional folding of RNA nanostructures , 2014, Science.

[111]  Peng Yin,et al.  Complex reconfiguration of DNA nanostructures. , 2014, Angewandte Chemie.

[112]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[113]  Qiangbin Wang,et al.  DNA-programmed self-assembly of photonic nanoarchitectures , 2014 .

[114]  M. Sobti,et al.  Rotary ATPases--dynamic molecular machines. , 2014, Current opinion in structural biology.

[115]  Hua-Zhong Yu,et al.  Functional DNA switches: rational design and electrochemical signaling. , 2014, Chemical Society reviews.

[116]  Björn Högberg,et al.  Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides , 2013, Nature Methods.

[117]  M. Rief,et al.  Rigid DNA Beams for High-Resolution Single-Molecule Mechanics** , 2013, Angewandte Chemie.

[118]  Zasha Weinberg,et al.  Small, highly active DNAs that hydrolyze DNA. , 2013, Journal of the American Chemical Society.

[119]  Guixue Wang,et al.  The persistence length and length per base of single-stranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory , 2013 .

[120]  R. Elber,et al.  Molecular machines. , 2013, Current opinion in structural biology.

[121]  T. G. Martin,et al.  Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature , 2012, Science.

[122]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[123]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[124]  R. Astumian Microscopic reversibility as the organizing principle of molecular machines. , 2012, Nature nanotechnology.

[125]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[126]  Hao Yan,et al.  Reconfigurable DNA origami to generate quasifractal patterns. , 2012, Nano letters.

[127]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[128]  K. Gothelf,et al.  Multilayer DNA origami packed on hexagonal and hybrid lattices. , 2012, Journal of the American Chemical Society.

[129]  J. F. Stoddart,et al.  Great expectations: can artificial molecular machines deliver on their promise? , 2012, Chemical Society reviews.

[130]  M. Bathe,et al.  Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures , 2011, Nucleic acids research.

[131]  P. Rothemund,et al.  Programmable molecular recognition based on the geometry of DNA nanostructures. , 2011, Nature chemistry.

[132]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[133]  Alberto Credi,et al.  Light operated molecular machines. , 2011, Chemical communications.

[134]  Conrad Steenberg,et al.  NUPACK: Analysis and design of nucleic acid systems , 2011, J. Comput. Chem..

[135]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[136]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[137]  P. Murat,et al.  Recent developments in oligonucleotide conjugation. , 2010, Chemical Society reviews.

[138]  Cai Ma,et al.  Structural DNA Nanotechnology , 2010 .

[139]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[140]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[141]  Masayuki Endo,et al.  Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. , 2010, Journal of the American Chemical Society.

[142]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[143]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[144]  K. Rechendorff,et al.  Persistence length and scaling properties of single-stranded DNA adsorbed on modified graphite. , 2009, The Journal of chemical physics.

[145]  Ryan J. Kershner,et al.  Placement and orientation of individual DNA shapes on lithographically patterned surfaces. , 2009, Nature nanotechnology.

[146]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[147]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[148]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[149]  Tim Liedl,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[150]  Vincenzo Balzani,et al.  Light powered molecular machines. , 2009, Chemical Society reviews.

[151]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[152]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[153]  Hao Yan,et al.  In vivo cloning of artificial DNA nanostructures , 2008, Proceedings of the National Academy of Sciences.

[154]  Harry M. T. Choi,et al.  Programming DNA Tube Circumferences , 2008, Science.

[155]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[156]  N. Pierce,et al.  NUPACK: a web-based tool for the analysis and design of nucleic acid systems , 2007 .

[157]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[158]  N. Cozzarelli,et al.  DNA overwinds when stretched , 2006, Nature.

[159]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[160]  F. Marchesoni,et al.  Brownian motors , 2004, cond-mat/0410033.

[161]  Nadrian C Seeman,et al.  Crystal structure of a continuous three-dimensional DNA lattice. , 2004, Chemistry & biology.

[162]  J. SantaLucia,et al.  The thermodynamics of DNA structural motifs. , 2004, Annual review of biophysics and biomolecular structure.

[163]  William M. Shih,et al.  A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron , 2004, Nature.

[164]  Nadrian C Seeman,et al.  At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology. , 2003, Chemistry & biology.

[165]  Yan Liu,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[166]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.

[167]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[168]  C. Bustamante,et al.  Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules , 1996, Science.

[169]  J. Howard,et al.  Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape , 1993, The Journal of cell biology.

[170]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[171]  P. Hagerman Flexibility of DNA. , 1988, Annual review of biophysics and biophysical chemistry.

[172]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.